A) $19.0 < \mu < 21.8$

1) Find the critical value $z_{\alpha/2}$	2 that corresponds to a	94% confidence level.		1)
A) 1.555	B) 1.88	C) 2.75	D) 1.96	
2) Find the critical value $z_{\alpha/2}$	that corresponds to a	98% confidence level.		2)
A) 2.33	B) 2.575	C) 1.75	D) 2.05	/
termine whether the given condi erval estimate of the population 3) The sample size is n = 6, σ A) Yes	mean µ.		-	nfidence 3)
4) The sample size is n = 5 ar A) Yes	nd σ is not known.	B) No		4)
e the confidence level and sampl cimal places as the sample mean 5) Weights of eggs: 95% conf A) 0.05 oz	unless otherwise note	d.	answer to the same nur D) 0.06 oz	nber of 5)
6) Systolic blood pressures fo σ = 12.8 mm Hg A) 48.9 mm Hg	-	94% confidence; n = 93, \overline{x} = C) 2.3 mm Hg	113.2 mm Hg, D) 2.5 mm Hg	6)
7) The duration of telephone 85% confidence. Round yc	-		4.2 minutes, n = 580,	7)
A) 0.251 min	B) 0.005 min	C) 0.010 min	D) 0.121 min	
e the confidence level and sampl swer to the same number of decir 8) Test scores: $n = 99$, $\overline{x} = 88.6$	mal places as the samp	le mean.	ng the population μ . Rou	ind your 8)
A) $87.3 < \mu < 89.9$	B) 86.6 < μ < 90.6	C) 87.1 < µ < 90.1	D) $86.8 < \mu < 90.4$	0)
9) A random sample of 112 f deviation of 3.8 ounces. C A) 21 oz < μ < 24 oz C) 21 oz < μ < 23 oz	6	a mean weight of 22 ounc nce interval for the popula B) 22 oz $< \mu < 24$ oz D) 20 oz $< \mu < 22$ oz		9)
, I				

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

C) 19.4 < µ < 21.4

D) 18.9 < µ < 21.9

B) 19.2 < μ < 21.6

•	iven information to find th Margin of error: \$140, cont	-	-	nknown population r	neanμ. 11)
,	A) 48	B) 96	C) 60	D) 68	
12)	How many women must b group. We want 90% confi the population standard d	dence that the sample me eviation is known to be 22	an is within 2.7 lb of the p lb.	opulation mean, and	12)
	A) 180	B) 181	C) 256	D) 178	
13)	How many weeks of data line of athletic footwear? V population mean, and the	Ve want 95% confidence t	hat the sample mean is wi	thin \$200 of the	13)
	A) 163	B) 115	C) 230	D) 281	
neither tł	f the following, as appropriate normal nor the t distribution 90%; n = 10; σ is unknown A) t _{$\alpha/2$} = 1.833	tion applies.		ritical value t $_{lpha/2}$, (c) s D) t $_{lpha/2}$ = 1.812	tate that
15)	98%; n = 7; σ = 27; populat	ion appears to be normall	y distributed.		15)
	A) $z_{\alpha/2} = 2.33$	B) $t_{\alpha/2} = 1.96$	C) $t_{\alpha/2} = 2.575$	D) $z_{\alpha/2} = 2.05$	
the margi Round yo	hat a sample is used to estimate the formula of the sample is used to estimate the four answer to one more decomposition of the same that the provide the same term of te	e sample is a simple rand simal place than the samp	lom sample and the popu	-	
17)	95% confidence; n = 12; x A) 7.16	= 31.8; s = 9.4 B) 4.48	C) 5.97	D) 5.37	17)

Use the given degree of confidence and sample data to construct a confidence interval for the population mean μ . Assume that the population has a normal distribution.

18) $n = 10, \bar{x} = 14.4, s = 4.3, 95\%$	% confidence			18)
A) 11.37 < μ < 17.43		B) 11.91 < μ < 16.89		
C) 11.32 < µ < 17.48		D) 11.34 < µ < 17.46		
19) Thirty randomly selected s standard deviation was 11.		1		19)
A) 70.38 < µ < 81.62		B) 72.53 < µ < 79.47		
C) 70.36 < µ < 81.64		D) 70.97 < µ < 81.03		
20) A sociologist develops a te			5	20)
selected subjects are given				
Construct the 95% confider		,		
A) 64.2 < µ < 88.2	B) 74.6 < μ < 77.8	C) 67.7 < µ < 84.7	D) 69.2 < µ < 83.2	

 21) A savings and loan association needs information concerning the checking account balances of its local customers. A random sample of 14 accounts was checked and yielded a mean balance of \$664.14 and a standard deviation of \$297.29. Find a 98% confidence interval for the true mean checking account balance for local customers. A) \$455.65 < µ < \$872.63 B) \$492.52 < µ < \$835.76 				21)
C) \$453.59 < μ < \$874.69		D) \$493.71 < μ <		
Solve the problem.				
22) Find the critical value $\chi \frac{2}{R}$	corresponding to a sa	mple size of 9 and a co	nfidence level of 95 percent.	22)
A) 15.507	B) 17.535	C) 2.733	D) 2.18	
23) Find the critical value χ^2_L	corresponding to a sa	mple size of 23 and a c	onfidence level of 90	23)
percent. A) 33.924	B) 9.542	C) 12.338	D) 40.289	
24) Find the chi-square value	χ^2_L corresponding to	a sample size of 10 and	d a confidence level of 99	24)
percent. A) 2.088	B) 21.666	C) 23.589	D) 1.735	

Use the given degree of confidence and sample data to find a confidence interval for the population standard deviation σ . Assume that the population has a normal distribution. Round the confidence interval limits to the same number of decimal places as the sample standard deviation.

	25) College students' annual ea	arnings: 98% confidence	e; $n = 9$, $\overline{x} = 4091 , $s = 856		25)
	A) $$578 < \sigma < 1640		B) \$674 < σ < \$1117		
	C) \$540 < σ < \$1887		D) \$520 < σ < \$1675		
	26) The mean replacement tim	-	8	2	26)
	standard deviation is 2.7 ye			standard deviation, σ ,	
	of the replacement times of	t all washing machines			
	A) 2.0 yr $< \sigma < 4.3$ yr		B) 1.9 yr < σ < 5.7 yr		
	C) 1.8 yr < σ < 5.1 yr		D) 1.9 yr < σ < 4.5 yr		
	27) A sociologist develops a te selected subjects are given			2	27)
	Construct the 95% confider				
			C) 17.5 < σ < 27.8	,	
Find	the appropriate minimum sam	ple size.			
	28) You want to be 99% confid standard deviation.		ndard deviation s is withir	15% of the population	28)
	A) 2434	B) 2638	C) 1336	D) 923	
29) To be able to say with 95% confidence level that the standard deviation of a data set is within 10% of the population's standard deviation, the number of observations within the data set must be greater than or equal to what quantity?					
	A) 805	B) 250	C) 335	D) 192	
	,	,	/	/	

Provide an appropriate response.

30) The confidence inter	rval, $18.34 < \sigma^2 < 84.51$, fo	or the population variance	is based on the following	30)
sample statistics: n =	$= 25$, $\overline{x} = 31.6$ and $s = 5.9$.	What is the degree of conf	idence?	
A) 95%	B) 90%	C) 98%	D) 99%	

Express the null hypothesis and the alternative hypothesis in symbolic form. Use the correct symbol(μ , p, σ) for the indicated parameter.

	are unable to produce ligh reflies unable to produce l	6	n. Use the parameter p,	
A) $H_0: p = 0.0014$	B) H ₀ : p > 0.0014	C) $H_0: p = 0.0014$	D) H ₀ : p < 0.0014	
$H_1: p < 0.0014$	H ₁ : $p \le 0.0014$	$H_1: p > 0.0014$	H ₁ : $p \ge 0.0014$	
32) A skeptical paranormal	researcher claims that the	proportion of Americans	that have seen a UFO,	32)
p, is less than 1 in every				
A) $H_0: p = 0.001$	B) H ₀ : p > 0.001	C) H ₀ : p = 0.001	D) H ₀ : p < 0.001	
$H_1: p < 0.001$	H ₁ : $p \le 0.001$	$H_1: p > 0.001$	$H_1: p \ge 0.001$	
ssume that the data has a norma		mber of observations is g	reater than fifty. Find th	e critical z
lue used to test a null hypothes				
33) $\alpha = 0.05$ for a two-tailed				33)
A) ±1.645	B) ±2.575	C) ±1.764	D) ±1.96	
	59 subjects with 30% sayin	g that they play a sport.		34)
A) -31.29	B) 15.33	C) -15.33	D) 31.29	
35) The claim is that the pro more than 0.10, and the attributable to residenti	sample statistics include r	2		35)
A) 3.96	B) -4.71	C) 4.71	D) -3.96	
rovide an appropriate response.				
36) You wish to test the clai	m that $\mu > 32$ at a level of	significance of $\alpha = 0.05$ and	d are given sample	36)
statistics $n = 50$, $\overline{x} = 32.3$ your answer to two dec	B_{i} , and s = 1.2. Compute the imal places.	e value of the standardized	l test statistic. Round	
A) 0.98	B) 1.77	C) 3.11	D) 2.31	
37) You wish to test the clai	m that $\mu = 1240$ at a level	of significance of $\alpha = 0.01$	and are given sample	37)
statistics $n = 35$, $\overline{x} = 1210$ your answer to two dec	0 and $s = 82$. Compute the imal places	value of the standardized	test statistic. Round	
	$\frac{1}{2} \frac{1}{2} \frac{1}$	C) 216	$D) \in 10$	

A) -3.82 B) -4.67 C) -2.16 D) -5.18

38) Find the standardized test statistic t for a sample with $n = 12$, $\bar{x} = 22.2$, $s = 2.2$, and $\alpha = 0.01$ if H ₀ : $\mu = 21$. Round your answer to three decimal places.				38)	
A) 1.890	B) 2.001	C) 2.132	D) 1.991		
39) Compute the stand $\alpha = 0.01$.	ardized test statistic, X ² , to	test the claim $\sigma^2 > 1.9$ if r	$n = 18, s^2 = 2.7, and$	39)	
A) 24.158	B) 43.156	C) 33.233	D) 28.175		
40) Compute the stand $\alpha = 0.01$.	ardized test statistic, X^2 to t	test the claim $\sigma^2 \neq 61.2$ if	$n = 10, s^2 = 67.5, and$	40)	
A) 3.276	B) 12.008	C) 9.926	D) 4.919		

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Use either the traditional method or P-value method as indicated. Identify the null and alternative hypotheses, test statistic, critical value(s) or P-value (or range of P-values) as appropriate, and state the final conclusion that addresses the original claim.

41)

41) A researcher wants to test the claim that convicted burglars spend an average of 18.7

months in jail. She takes a random sample of 11 such cases from court files and finds that x

= 21.2 months and s = 7.4 months. Test the claim that μ = 18.7 months at the 0.05

significance level. Use the traditional method of testing hypotheses.

Use the traditional method to test the given hypothesis. Assume that the population is normally distributed and that the sample has been randomly selected.

Answer Key Testname: STATS-3-REVIEW

2) A 3) A 4) B 5) D 6) D 7) A 8) B 9) C 10) C 11) D 12) A 13) A 14) A 15) A 16) B 17) C 18) C 19) C 20) C 21) C 22) B 23) C 24) D 25) C 26) D 27) A 28) C 29) D 30) D 31) A 32) A

1) B

- 33) D
- 34) C 35) C
- 36) B
- 37) C
- 38) A
- 39) A
- 40) C

41) H₀: $\mu = 18.7$ mo. H₁: $\mu \neq 18.7$ mo. Test statistic: t = 1.12. Critical values: t = ±2.228. Fail to reject H₀. There is not sufficient evidence to warrant rejection of the claim that the mean is 18.7 months.

42) Test statistic: $\chi^2 = 21.253$. Critical value: $\chi^2 = 21.920$. Fail to reject the null hypothesis. There is not sufficient evidence to support the claim that the standard deviation is greater than 30.0.