Name: \qquad Date: \qquad

1. What value of $z_{\alpha / 2}$ is used in confidence interval shown below?

2. According to a study of 90 truckers, a trucker drives, on average, 540 miles per day. If the standard deviation of the miles driven per day for the population of truckers is 40 , find the 99% confidence interval of the mean number of miles driven per day by all truckers?
3. The formula for the confidence interval of the mean for a specific α is
\qquad .
4. A food snack manufacturer samples 11 bags of pretzels off the assembly line and weighs their contents. If the sample mean is 15.2 oz . and the sample standard deviation is 0.40 oz ., find the 95% confidence interval of the true mean.
5. The \qquad are the number of values that are free to vary after a sample statistic has been computed.
6. If \hat{p} is equal to 0.83 , then \hat{q} is equal to \qquad .
7. A survey of 800 women shoppers found that 17% of them shop on impulse. What is the 98% confidence interval for the true proportion of women shoppers who shop on impulse?
8. A quality control expert wants to estimate the proportion of defective components that are being manufactured by his company. A sample of 300 components showed that 20 were defective. How large a sample is needed to estimate the true proportion of defective components to within 2.5 percentage points with 99% confidence?
9. The area under each chi-square distribution is equal to \qquad .
10. The formula for the confidence interval for a standard deviation is
\qquad
11. Find the 95% confidence interval for the standard deviation of the lengths of pipes if a sample of 21 pipes has a standard deviation of 10.6 inches.
12. Find the values for $\chi_{\text {left }}^{2}$ and $\chi_{\text {right }}^{2}$ when $\alpha=.05$ and $n=27$.

Answer Key

1. 1.65
2. $529<\mu<551$
3. $\bar{X}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)<\mu<\bar{X}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)$
4. $14.9<\mu<15.5$
5. degrees of freedom
6. 0.17
7. $0.139<p<0.201$
8. 661
9. 1.00
10. $\sqrt{\frac{(n-1) s^{2}}{\chi_{\text {light }}^{2}}}<\sigma<\sqrt{\frac{(n-1) s^{2}}{\chi_{\text {left }}^{2}}}$
11. $8.1<\sigma<15.3$
12. 13.844 and 41.923
