Refrigeration \& Air Conditioning Technology

TEMPERATURE

- The level of heat or heat intensity
- Measured with thermometers
- English system - Fahrenheit (${ }^{\circ}$ F)
- Metric system - Celsius (${ }^{\circ} \mathrm{C}$)
- Fahrenheit Absolute scale - Rankine (${ }^{\circ}$ R)
- Celsius Absolute scale - Kelvin (${ }^{\circ} \mathrm{K}$)
- Absolute zero - Temperature at which all molecular movement stops (-460° F)

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

CENGAGE Learning

Refrigeration \& Air Conditioning Technology

SIXTH EDITION

FAHRENHEIT TO CELSIUS CONVERSIONS

$$
{ }^{\circ} \mathrm{C}=(5 / 9)\left({ }^{\circ} \mathrm{F}-32\right)
$$

EXAMPLE: CONVERT 212° F TO CELSIUS

$$
\text { - } C=(5 / 9)(212-32)
$$

$$
\begin{aligned}
& \cdot C=(5 / 9)(180) \\
& \cdot C=5 \times 20
\end{aligned}
$$

$$
{ }^{\circ} \mathrm{C}=100
$$

Refrigeration \& Air Conditioning Technology

CELSIUS TO FAHRENHEIT CONVERSION

$$
{ }^{\circ} F=(9 / 5)^{\circ} \quad C+32
$$

EXAMPLE: CONVERT 10° C TO FAHRENHEIT

$$
\text { - } F=(9 / 5)(10)+32
$$

$$
\text { - } F=(9 \times 2)+32
$$

$$
\text { - } F=18+32
$$

$$
\text { - } F=50
$$

Refrigeration \& Air Conditioning Technology

SIXTH EDITION

INTRODUCTION TO HEAT

- Heat is the motion of molecules
- Heat cannot be created or destroyed
- Heat can be measured and accounted for
- Heat can be transferred from one substance to another
- Heat travels from a warmer substance to a cooler substance
- Quantity of heat in a substance is measured in British Thermal Units, BTUs

Reffigeration \& Air Conditioning Technology

THE BRITISH THERMAL UNIT IS THE AMOUNT OF HEAT ENERGY THAT IS REQUIRED TO RAISE THE TEMPERATURE OF 1 POUND OF WATER 1 DEGREE FAHRENHEIT

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

ONE BTU OF HEAT ENERGY HAS BEEN ADDED TO ONE POUND OF WATER

* DELMAR

CENGAGE Learning

Refrigeration \& Air Conditioning Technology

CONDUCTION

- Heat energy travels from one molecule to molecule within a substance
- Heat energy travels from one substance to another
- Heat does not conduct at the same rate in all materials
- Example of conduction:

Heat will travel through a copper rod when placed near fire

Reffigeration \& Air Conditioning Technology

Refrigeration \& Air Conditioning Technology

CONVECTION

- Heat transfers through a fluid from one substance to another
- Natural convection utilizes natural fluid flow, such as the rising of warm air and the falling of cooler air
- Forced convection uses fans or pumps to move fluids from one point to another
- Example of convection:

Baseboard Heating

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

Refrigeration \& Air Conditioning Technology

RADIATION

- Radiant heat passes through air, heating the first solid object the heat comes in contact with
- These heated objects, in turn, heat the surrounding area
- Radiant heat can travel through a vacuum
- Radiant heat can travel through space without heating it
- Example of radiation:

An electric heater that glows red

Refrigeration \& Air Conditioning Technology

SIXTH EDITION

* DELMAR

CENGAGE Learning

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

SENSIBLE HEAT

- Heat transfer that results in a change in temperature of a substance
- Sensible heat transfers can be measured with a thermometer
- Example of a sensible heat transfer:

Changing the temperature of a sample of water from $68^{\circ} \mathrm{F}$ to $69^{\circ} \mathrm{F}$

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

LATENT HEAT

- Also referred to as hidden heat
- Latent heat transfers result in a change of state of a substance with no change in temperature
- Latent heat transfers cannot be measured with a thermometer
- Example of a latent heat transfer:

Changing 1 pound of ice at $32^{\circ} F$ to 1 pound of water at $32^{\circ} \mathrm{F}$

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

SPECIFIC HEAT

- Defined as the number of btus required to raise the temperature of 1 pound of a substance 1 degree Fahrenheit
- Specific heat of water is 1.00
- Specific heat of ice is approximately 0.50
- Specific heat of steam is approximately 0.50
- Specific heat of air is approximately 0.24

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

SPECIFIC HEAT FORMULA

Q = Weight x Specific Heat x Temperature Difference

Where $\mathrm{Q}=$ Quantity of heat needed for the temperature change

Example: 1000 pounds of steel must be heated from $0^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F}$.
How much heat is required to accomplish this?
The specific heat of steel is $0.116 \mathrm{btu} / \mathrm{lb}$
Substituting in the above formula gives us

$$
\begin{aligned}
& \mathrm{Q}=1000 \text { pounds } \times 0.116 \mathrm{btu} / \mathrm{lb} \times\left(70^{\circ} \mathrm{F}-0^{\circ} \mathrm{F}\right) \\
& \mathrm{Q}=1,000 \times 0.116 \times 70=8,120 \mathrm{btu}
\end{aligned}
$$

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

© 2008 Delmar, a part of Cengage Learning

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

© 2008 Delmar, a part of Cengage Learning

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

Refrigeration \& Air Conditioning Technology

SIXTH EDITION

SUMMARY OF ICE EXAMPLE

Ice at $0^{\circ} \mathrm{F}$ to Ice at $32^{\circ} \mathrm{F} \quad(32-0)(0.5)$	$=16 \mathrm{btu}$
Ice at $32^{\circ} \mathrm{F}$ to Water at $32^{\circ} \mathrm{F}$	$=144 \mathrm{btu}$
Water at $32^{\circ} \mathrm{F}$ to Water at $212^{\circ} \mathrm{F}(212-32)(1.0)$	$=180 \mathrm{btu}$
Water at $212^{\circ} \mathrm{F}$ to Steam at $212^{\circ} \mathrm{F}$	$=970 \mathrm{btu}$
Steam at $212^{\circ} \mathrm{F}$ to Steam at $350^{\circ} \mathrm{F}(350-212)(0.5)$	$=69 \mathrm{btu}$

Reffigeration \& Air Conditioning Technology

PRESSURE

- Defined as the force per unit area
- Often expressed in pounds per square inch
- Example: If a 100 -pound weight rests on a surface of 1 square inch, the pressure is 100 psi
- Example: If a 100 -pound weight rests on a surface of 100 square inches, the pressure is only 1 psi

Reffigeration \& Air Conditioning Technology

1 cubic inch block with a weight of 1 pound

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

ATMOSPHERIC PRESSURE

- The atmosphere we live in has weight
- The atmosphere exerts a pressure of 14.696 psi at sea level (often rounded off to 15 psi)
- 14.696 psi at sea level is known as the standard condition
- Measured with a barometer

Refrigeration \& Air Conditioning Technology

SIXTH EDITION

THE BAROMETER

- Used to measure atmospheric pressure
- Constructed as a 36 " glass tube
- Tube is sealed at one end and filled with mercury
- The tube is inverted and placed mercury
- As atmospheric pressure drops, so does the level of mercury in the tube
- At atmospheric pressure, the height of the mercury will be 29.92"

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

As atmospheric pressure drops, so does the level of mercury in the tube

Height of mercury column is 29.92 " at standard condition

Refrigeration \& Air Conditioning Technology

SIXTH EDITION

INCHES OF MERCURY AND PSI

- The column of mercury is $29.2^{\prime \prime}$ at atmospheric condition of 14.696 psi
- One psi is equal to approximately 2 " Hg
- Example: If the barometer reads $20 " \mathrm{Hg}$, then the atmospheric pressure is approximately equal to 10 psi
- Absolute pressures are measured in pounds per square inch absolute, psia

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

PRESSURE GAGES

- Bourden tube - measures pressure in a closed system
- Used to measure the pressures in an air conditioning or refrigeration system
- Gages read 0 psi when opened to the atmosphere
- Gage pressures are measured in pounds per square inch gage, psig

Reffigeration \& Air Conditioning Technology

SIXTH EDITION

PRESSURE CONVERSIONS

- To convert gage pressure to absolute pressure, we add 15 (14.696) psi to the gage reading
- To convert absolute pressure to gage pressure, we subtract 15 (14.696) from the absolute pressure
- Example: 0 psig = 15 psia
- Example: 70 psig $=85 \mathrm{psia}$

