1401	Exam 3	8 Review
------	--------	----------

Name		 	

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1) A mass of 50. kg is suspended from a steel wire of diameter 1.0 mm and length 11.2 m.	1)
How much will the wire stretch? (The Young's modulus for steel is $20 \times 10^{10} \text{ N/m}^2$.)34.9mm	
2) A wire of diameter 1.0 mm and length 3.5 m stretches 3.5 mm when 8.0 kg is hung from it.	2)
(b) What is the effective spring constant for the stretching wire? 2.2x10⁴	
 3) Consider diving 20.0 m below the surface of the ocean (density 1.03 grams/cc). (a) what is the gauge pressure at that depth in atmospheres 21 99 atm 	3)
(b) what is the absolute pressure at that depth, in atmospheres?2.99atm	
(c) If you were in a submarine at that depth, what would be the total force on a 100. cm^2 window? 2.02 x 10^3	
4) A cylindrical rod of length 12. cm and diameter 2.0 cm will just barely float in water. What	4)
is its mass?37.7g	_`
5) A long telephone pole (wood density 0.80 kg/m ³) is vertically lowered into a slightly larger vertical pipe which is filled with salt water of density 1.04 kg/m ³ . The pole ends up	5)
floating with what percent of the pole above the water? 23%	
6) An ideal fluid in a pipe of diameter 14. cm is moving at 6.0 m/s.	6)
97kg/s	
(b) What is the speed of flow if the pipe narrows to 4.0 cm radius?18m/s	
7) An incompressible fluid flows at 0.252 m/s through a 44. mm diameter (circular cross	7)
section, pipe. The pipe widens to a square cross sectional area 5.5 cm on a side. Assuming steady flow:	
(a) what is the speed through the "square" section? .13m/s	

(b) what is the flow rate in liters/minute? 23liters/minute

8) A plastic block of dimensions 2.0 cm × 3.0 cm × 4.0 cm has a mass of 30. grams. What is its density? 8)

- A) 1.2 g/cm³
- B) 1.6 g/cm³
- C) 2.3 g/cm³
- D) 1.3 g/cm³ XXX
- E) 0.80 g/cm³
- 9) Instead of cables, a hydraulic lift raises an elevator weighing 2.5 kiloNewtons. The input piston has
 9) ______
 a 2.0 cm diameter and the lift piston has a 28. cm diameter (See Figure 9-3).

What minimum force must be applied to the input piston?

A) 13. NXXX B) 35. kN C) 0.49 MN D) 0.18 kN E) 2.5 kN

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 10) At what temperature are the numerical readings on the Fahrenheit and Celsius scales the 10) ______ same?-40
- 11) The thermal coefficient of linear expansion of Copper is $1.7 \times 10^{-5} \text{ C}^{\circ-1}$. What is the 11) ______ thermal volume expansion coefficient?5.1x10^{-5}

2

12) ____

12) Express your body temperature (98.6° F) in Celsius degrees.

A) 37.0° CXXX

- B) 66.6° C
- C) 72.6° C
- D) 45.5° C
- E) 29.5° C

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

13) A steel cable spanning a river is 200.000 m long when the temperature is 20.° C. What will
 13) ______
 be its length when the temperature drops to 0° C? (The coefficient of thermal expansion of steel is 12. × 10⁻⁶ K⁻¹.)199.952m

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 14) "Absolute Zero" is what temperature on the Celsius and Fahrenheit scales respectively?
 14)
 - A) -212° C, -273° F
 B) 0° C, 459° F
 C) -273° C, -459° FXXX
 D) -273° C, -212° F
 E) -459° C, -273° F
- - A) 1.190 cm
 - B) 1.210 cm
 - C) 1.205 cmXXX
 - D) 1.200 cm
 - E) 1.195 cm

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

system?		5			
A) 17.8°CXXX	B) 19.2°C	C) 18	.3°C [D) 23.7°C	
19) What temperatur sunny day when insulated, that the collector acts as a	e exists inside a solar the outside temperatu e sun irradiates the co perfect black body.	collector (effective co ire is +20.°C? Assume llector with a power j	llection area of 15 m ² that the collector is th per unit area of 600 W) on a bright hermally //m ² , and that the	19) _
A) 154°C	B) 73°C	C) 93°CXXX	D) 107°C	E) 33°C	
20) A lamp radiates 75. J/s when the room is set on 27°C but it radiates 90. J/s when the room temperature drops to 10. C. What is the temperature of the lamp?					
temperature drop					

21) Referring to Figure 12-9, a substance carried from point A to B absorbs 50. J and finds its 21) _____ internal energy has increased by 20. J. Going from B to C the internal energy decreases by

5. Joules.

- (a) How much work was done from A to B? 30J
- (b) How much heat was absorbed from B to C? -5J
- (c) How much work was done going from B to C?Zero
- 22) A piece of metal at 80°C is placed in 1.2 L of water at 72°C. The system is thermally isolated 22) _____ and reaches a final temperature of 75°C. Estimate the approximate change in entropy for this process..2cal/K

	23) What is the change of grams of water:(a) changes from lique(b) changes from ice	entropy of water (L _f = 0.33 uid to steam?2.73KJ/K to liquid?549J/K	3 MJ/kg, L _V = 2.26 MJ/kg	ı) when 450. 🤅	23)
MUL	TIPLE CHOICE. Choose	the one alternative that bes	st completes the stateme	ent or answers the que	estion.
	24) How much heat must	be removed from steam to	change it to liquid?		24)
	A) 1.8 kcal/g	B) 600 cal/g	C) 1 kcal/g	D) 540 cal/gXX	κx
	25) How much heat is ne	eded to raise the temperatu	re of 200 g of lead (c = 0.	11 kcal/kg · °C) by 10	C°? 25)
	A) 2000 cal	B) 330 calXXX	C) 20 kcal	D) 33.0 cal	
SHO	RT ANSWER. Write the v	vord or phrase that best cor	mpletes each statement	or answers the questi	on.
	26) An engine on each cy What is its efficiency?	cle takes in 40. Joules, does =25%	10. Joules of work, and e	expels 30. J of heat.	26)
	27) A heat engine absorb(a) Calculate the efficiency(b) Calculate the work	s 64 kcal of heat each cycle a ciency each cycle.=34% k done each cycle.=22Kcal	and exhausts 42 kcal.	:	27)
	28) A refrigerator has a C(a) what is the minin(b) what is its efficient	OP of 2.5. If it removes 7.7 num power motor to operat ncy if it were a reversible er	MJ of heat in 25. minute te the refrigerator?2.1KW ngine?29%	s, 2 /	28)
	29) If the efficiency of a re(a) what is its COP o(b) what is its COP o	eversible engine is 28.%, perated as a refrigerator?2.6 perated as a heat pump?3.6	6	:	29)
MUL	TIPLE CHOICE. Choose	the one alternative that bes	st completes the stateme	ent or answers the que	estion.
	30) An athlete doing pusl the internal energy of	n-ups performs 650 kJ of we the athlete?	ork and loses 425 kJ of h	eat. What is the chang	e in 30)
	A) 276 kJ				

- B) -225 kJ
- C) -1075 kJXXX
- D) 225 kJ
- E) 1075 kJ

31) A gas is taken through the cycle illustrated here in Figure 12-10.

31) _____

Figure 12-10	

	During one cycle	, how much work is	done by an engine ope	erating on this cycle?		
	A) pV	B) 4pV	C) 5pV	D) 2pV	E) 3pVXXX	
	32) A certain engine heat to a cold ten	extracts 1300 J of hean perature reservoir.	at from a hot temperati What is the efficiency o	ure reservoir and disc of this engine?	harges 700 J of	32)
	A) 54%	B) 86%	C) 46%XXX	D) 13%	E) 27%	
	33) If the theoretical	efficiency of a Carno	ot engine is to be 100%,	the heat sink must be	è	33)
	A) at 0°C.					
	B) at absolute	zero.XXX				
	C) a perfect ra	diator.				
	D) infinitely h	ot.				
	E) at 100°C.					
	34) What is the theor	retical efficiency of a	Carnot engine that op	erates between 600 K	and 300 K?	34)
	A) 100%	B) 75%	C) 25%	D) 50%XXX	E) 0%	
SHC	DRIANSWER. Write	the word or phrase	inat best completes ead	ch statement or answ	ers the question.	
	35) What is the sprin	ig constant of a sprir	ng that stretches 2.0 cm	when a mass of 0.60	kg is 35) _	
	suspended from	it?.29KN/m				
	36) A spring-driven	dart gun propels a 1	0. g dart. It is cocked b t will the dart leave the	y exerting a force of 2	0. Nover 36) <u>-</u> oring bas	
	negligible mass?	10m/s		gun, assuming the s		
	37) A 0.30 kg mass is	s suspended on a stri	ing. In equilibrium the	mass stretches the sp	ring 2.0 37) _	
	cm downward. T	he mass is then pull	ed an additional distar	nce of 1.0 cm down ar	d released	
	(a) Calculate th	e period of oscillatio	n. =0.28s			

(b) Calculate the total energy of the system. 0.0074J

38) An air conditioner with	a coefficient of performa	nce of 3.5 uses 30 kW of p	oower. How much power	38)
Δ) 75 kW				
B) 210 kW				
C) 105 kW				
D) 30 kW				
E) 135 kWXXX				
39) What is the change of er	ntropy associated with 3.0	0 kg of water freezing to i	ce at 0.°C?	39)
A) -0.88 kcal/KXXX		B) +0.88 kcal/K		
C) 1.0 kcal/K		D) -1.1 kcal/K		
40) 1500 J of work is equiva	lent to how much heat?			40)
A) 6,279,000 cal	B) 358 calXXX	C) 6.279 kcal	D) 358 kcal	
 41) 0.45 kg of a metal at 90.1 (a) If the final temperation (b) If the water contain metal specific heat determ 	°C is added to 0.40 kg of ture of the mixture is 26.° er has a significant heat c hined in part "a"given the	water at 20.0° C. C, what is the specific her apacity, will this increase same data?	41) _ at of the metal? or decrease the	
42) A pendulum makes 12 ((a) What is its frequence	complete swings in 8.0 s. cy?1.5Hz(b) What is its	period?o.67sec	42)	
43) An object oscillates such seconds	n that its displacement is :	x = (0.222 m) sin(314. <i>t</i>) w	here t is in 43) _	
(a) In one period, the o(b) What is the frequen(c) What is the position	bject moves what distanc cy?50Hz n at t = 1.00 s?-0.0352m	re?.888m		
44) Suppose you want to se	t up a simple pendulum	with a period of 0.250 s.	44)	
(a) What length is required(b) What length would	ired if g = 9.80 m/s ² on E be required on the moon	arth?0.0155m assuming g is 6 (assume	exact) times	

LESS than on Earth?0.259cm

4	 5) A string of length 2.5 (Hz, a standing wave v) (a) Determine the dis wavelength of the wavelength of the vel (c) Determine the vel (d) Determine the fur 	m is fixed at both ends. W with five loops is formed. tance between two adjacen ves that travel on the string ocity of waves.85m/s ndamental frequency of thi	/hen the string vil nt nodes.0.5m(b) g.1.0m is string.17Hz	orates at a frequency of 85 Determine the	45)
40	b) "Absolute Zero" is how freezing	w many Fahrenheit degree	es below freezing	(water)?491 below	46)
MULTI	PLE CHOICE. Choose t	he one alternative that be	est completes the	statement or answers the qu	uestion.
4	7) The mass of a mass-a released. A frequency displaced only 5 cm a	nd-spring system is displa of 4 Hz is observed. What nd then released?	aced 10 cm from i t frequency would	ts equilibrium position and d be observed if the mass had	47) d been
	A) 2 Hz	B) 4 HzXXX	C) 8 Hz	D) 6 Hz	
48	A mass attached to the x = 0.5 sin(20 t) where acceleration for this m	e free end of an ideal sprin • x is in meters and t is in so nass?	ng executes SHM econds. What is th	according to the equation he magnitude of the maximu	48) ım
	A) 20 m/s ²				
	B) 100 m/s ²				
	C) 10 m/s ²				
	D) (20/π) m/s ²				
	E) 200 m/s ² XXX				
49) Grandfather clocks of long is the length of a	ten are built so that each o simple pendulum for a 2.0	ne-way swing of 00 second period?	the pendulum is a second. H	łow 49)
	A) 24.8 cm				
	B) 0.993 mXXX				
	C) 101.cm				
	D) 500. cm				

E) 0.500 m

50)

E) 6.29 kg

54) A 25.0-g string is stretched with a tension of 43.0 N between two fixed points 12.0 m apart. What is 54) the frequency of the second harmonic? A) 12.0 HzXXX B) 18.0 Hz C) 36.0 Hz D) 24.0 Hz E) 6.00 Hz 55) ____ 55) Find the first three harmonics of a string of linear mass density 2.00 g/m and length 0.600 m when it is subjected to tension of 50.0 N. A) 66 Hz, 132 Hz, 198 Hz B) 132 Hz, 264 Hz, 396 HzXXX C) 264 Hz, 528 Hz, 792 Hz D) none of the above 56) The velocity of propagation of a transverse wave on a 2.0 m long string fixed at both ends is 200. 56) m/s. Which one of the following is not a resonant frequency of this string? A) 25 HzXXX B) 100 Hz C) 200 Hz D) 50 Hz 57) A 2.0 kg mass is attached to the end of a horizontal spring (k = 50. N/m) and set into simple 57) harmonic motion with an amplitude of 10. cm. What is the total mechanical energy of this system? A) 0.25 JXXX B) 1.00 J C) 25 J D) 2.5 J E) 0.02 J 58) Water flows through a horizontal pipe of cross-sectional area 10. cm² at a pressure of 0.25 atm. The 58) flow rate is 1.0 L/s. At a valve, the effective cross-sectional area of the pipe is reduced to 5.0 cm². What is the pressure at the valve?

A) 0.112 atm

B) 7.7 × 10³ Pa

- C) 0.157 atm
- D) 0.235 atmXXX
- E) 0.200 atm