Chapter 24: The Digestive System

2 groups of organs compose the digestive system
- Gastrointestinal (GI) tract or alimentary canal – mouth, most of pharynx, esophagus, stomach, small intestine, and large intestine
- Accessory digestive organs – teeth, tongue, salivary glands, liver, gallbladder, and pancreas

6 functions of the digestive system
1. Ingestion
2. Secretion of water, acid, buffers, and enzymes into lumen
3. Mixing and propulsion
4. Digestion
 - Mechanical digestion churns food
 - Chemical digestion – hydrolysis
5. Absorption – passing into blood or lymph
6. Defecation – elimination of feces

Layers of the GI tract
- Wall of GI tract from lower esophagus to anal canal has same basic 4 layers
 1. Mucosa – inner lining
 - Epithelium protection, secretion, absorption
 - Lamina propria – connective tissue with blood and lymphatic vessels and mucosa-associated lymphatic tissue (MALT)
 - Muscularis mucosae – thin layer of smooth muscle making folds to increase surface area
 2. Submucosa
 - Connective tissue binding mucosa to muscularis
 - Contains many blood and lymphatic vessels
 - Submucosal plexus

Layers of the GI tract
- Muscularis
 - Voluntary skeletal muscle found in mouth, pharynx, upper 2/3 of esophagus, and anal sphincter
 - Involuntary smooth muscle elsewhere
 - Arranged in inner circular fibers and outer longitudinal fibers
 - Myenteric plexus between muscle layers
- Serosa
 - Outermost covering of organs suspended in abdominopelvic cavity
 - Also called visceral peritoneum
 - Esophagus lacks serosa – has adventitia
Layers of the gastrointestinal tract

Neural innervation

- Enteric nervous system (ENS)
 - Intrinsic set of nerves – “brain of gut”
 - Neurons extending from esophagus to anus
 - 2 plexuses
 - Myenteric plexus – GI tract motility
 - Submucosal plexus – controlling secretions
- Autonomic nervous system
 - Extrinsic set of nerves
 - Parasympathetic stimulation increases secretion and activity by stimulating ENS
 - Sympathetic stimulation decreases secretion and activity by inhibiting ENS

Organization of the enteric nervous system

Peritoneum

- Largest serous membrane of the body
- Divided into
 - Parietal peritoneum – lines wall of cavity
 - Visceral peritoneum – covers some organs
 - Also called serosa
 - Space between is peritoneal cavity
 - 5 major peritoneal folds
 - Greater omentum, falciform ligament, lesser omentum, mesentery, and mesocolon
 - Weave between viscera binding organs together

Peritoneal Folds
Mouth

- Oral or buccal cavity
- Formed by cheeks, hard and soft palates, and tongue
- Oral cavity proper is a space that extends from gums and teeth to fauces (opening between oral cavity and oropharynx)
- Salivary glands release saliva
 - Ordinarily, just enough is secreted to keep mouth and pharynx moist and clean
 - When food enters mouth, secretion increases to lubricate, dissolve and begin chemical digestion
 - 3 pairs of major salivary glands secrete most of the saliva
 - Parotid, submandibular, and sublingual

Saliva

- Mostly water 99.5%
- 0.5% solutes – ions, dissolved gases, urea, uric acid, mucus, immunoglobulin A, lysozyme, and salivary amylase (acts on starch)
- Not all salivary glands produce the same saliva
- Salivation
 - Controlled by autonomic nervous system
 - Parasympathetic stimulation promotes secretion of moderate amount of saliva
 - Sympathetic stimulation decreases salivation

Tongue and Teeth

- Tongue
 - Accessory digestive organ
 - Skeletal muscle covered by mucous membrane
 - Maneuvers food for chewing, shapes mass, forces food back for swallowing
 - Lingual glands secrete salivary lipase
- Teeth or dentes
 - Accessory digestive organ
 - 3 major regions – crown, root, and neck
 - Dentin of crown covered by enamel
 - 2 dentitions – deciduous and permanent teeth

Structures of the mouth (oral cavity)

The three major salivary glands - parotid, sublingual, and submandibular

A typical tooth and surrounding structures
Digestion in the mouth

- Mechanical digestion in the mouth
 - Chewing or mastication
 - Food manipulated by tongue, ground by teeth, and mixed with saliva
 - Forms bolus
- Chemical digestion in the mouth
 - Salivary amylase secreted by salivary glands acts on starches
 - Only monosaccharides can be absorbed
 - Continues to act until inactivated by stomach acid
 - Lingual lipase secreted by lingual glands of tongue acts on triglycerides
 - Becomes activated in acidic environment of stomach

Pharynx

- Passes from mouth into pharynx
- 3 parts
 - Nasopharynx
 - Functions only in respiration
 - Oropharynx
 - Digestive and respiratory functions
 - Laryngopharynx
 - Digestive and respiratory functions

Esophagus

- Secretes mucous, transports food – no enzymes produced, no absorption
- Mucosa – protection against wear and tear
- Submucosa
- Muscularis divided in thirds
 - Superior 1/3 skeletal muscle
 - Middle 1/3 skeletal and smooth muscle
 - Inferior 1/3 smooth muscle
- 2 sphincters – upper esophageal sphincter (UES) regulates movement into esophagus, lower esophageal sphincter (LES) regulates movement into stomach
- Adventitia – no serosa – attaches to surroundings

Histology of the esophagus

Deglutition

- Act of swallowing
- Facilitated by secretions of saliva and mucus
- Involves mouth, pharynx, and esophagus
- 3 stages
 - Voluntary – bolus passed to oropharynx
 - Pharyngeal – involuntary passage through pharynx into esophagus
 - Esophageal – involuntary passage through esophagus to stomach
 - Peristalsis pushes bolus forward

Deglutition (swallowing)
Stomach
- Serves as mixing chamber and holding reservoir
- 4 main regions: Cardia, fundus, body, pylorus
- Same 4 layers:
 - Mucosa – gastric glands open into gastric pits
 - 3 types of exocrine gland cells – mucous neck cells (mucus), parietal cells (intrinsic factor and HCl), and chief cells (pepsinogen and gastric lipase)
 - G cell – endocrine cell
 - Submucosa
 - Muscularis – additional 3rd inner oblique layer
 - Serosa – part of visceral peritoneum

External and internal anatomy of the stomach

Histology of the stomach

Mechanical and Chemical Digestion
- Mechanical digestion
 - Mixing waves – gentle, rippling peristaltic movements – creates chyme
- Chemical digestion
 - Digestion by salivary amylase continues until inactivated by acidic gastric juice
 - Acidic gastric juice activates lingual lipase
 - Digest triglycerides into fatty acids and diglycerides
 - Parietal cells secrete H+ and Cl- separately but net effect is HCl
 - Kills many microbes, denatures proteins

Chemical Digestion
- Chemical digestion (cont.)
 - Pepsin secreted by chief cells digest proteins
 - Secreted as pepsinogen
 - Gastric lipase splits triglycerides into fatty acids and monoglycerides
- Small amount of nutrient absorption
 - Some water, ions, short chain fatty acids, certain drugs (aspirin) and alcohol

Pancreas
- Lies posterior to greater curvature of stomach
- Pancreatic juice secreted into pancreatic duct and accessory duct and to small intestine
 - Pancreatic duct joins common bile duct and enters duodenum at hepatopancreatic ampulla
- Histology
 - 99% of cells are acini
 - Exocrine
 - Secrete pancreatic juice – mixture of fluid and digestive enzymes
 - 1% of cells are pancreatic islets (islets of Langerhans)
 - Endocrine
 - Secrete hormones glucagon, insulin, somatostatin, and pancreatic polypeptide
Relation of the pancreas to the liver, gallbladder, and duodenum

Pancreatic juice
- 1200-1500ml daily
- Mostly water
 - Sodium bicarbonate — buffers acidic stomach chyme
 - Enzymes
 - Pancreatic amylase
 - Proteolytic enzymes — trypsin (secreted as trypsinogen), chymotrypsin (chymotrypsinogen), carboxypeptidase (procarboxypeptidase), elastase (proelastase)
 - Pancreatic lipase
 - Ribonuclease and deoxyribonuclease

Liver and gallbladder
- Liver is the heaviest gland of the body
- Liver is composed of
 - Hepatocytes — major functional cells of liver
 - Wide variety of metabolic, secretory, and endocrine functions — secrete bile (excretory product and digestive secretion)
 - Bile canaliculi — ducts between hepatocytes that collect bile
 - Exit livers as common hepatic duct, joins cystic duct from gallbladder to form common bile duct
 - Hepatic sinusoids — highly permeable blood capillaries receiving oxygenated blood from hepatic artery and deoxygenated nutrient-rich blood from hepatic portal vein
 - 3 different ways to organize units
 - Hepatic acinus — preferred method
 - Hepatocytes arranged in 3 zones around short axis with no sharp boundaries

Histology of the Liver

Gallbladder
- Contraction of smooth muscle fibers eject contents of gall bladder into cystic duct
- Functions to store and concentrate bile produced by the liver until it is needed in the small intestine
- Absorbs water and ions to concentrate bile up to ten-fold
Hepatic blood flow

- Liver receives blood from
- Hepatic artery carrying oxygenated blood
- Hepatic portal vein carrying deoxygenated blood with newly absorbed nutrients and possibly drugs, microbes or toxins from GI tract

Role and composition of bile

- Hepatocytes secrete 800-1000mL of bile daily
- Mostly water, bile salts, cholesterol, lecithin, bile pigments and several ions
- Partially excretory product/ partially digestive secretion
- Bilirubin – principal bile pigment
 - Derived from heme of recycled RBCs
 - Breakdown product stercobilin gives feces brown color
- Bile salts play role in emulsification
 - Also aid in absorption of lipids following digestion

Small intestine

- 3 regions – duodenum, jejunum, and ileum
- Same 4 layers
 1. Mucosa
 - Absorptive cells (digest and absorb), goblet cells (mucus), intestinal glands (intestinal juice), Paneth cells (lysozyme), and enteroendocrine cells
 - Abundance of MALT
 2. Submucosa
 - Duodenal glands secrete alkaline mucus
 3. Muscularis
 4. Serosa
 - Completely surrounds except for major portion of duodenum

Anatomy of the small intestine

Special structural features increase surface area for digestion and absorption

- Circular folds
 - Permanent ridges of mucosa and submucosa
 - Cause chyme to spiral
- Villi
 - Fingerlike projections of mucosa
 - Contains arteriole, venule, blood capillary, and lacteal
- Microvilli
 - Projects of apical membrane of absorptive cells
 - Brush border with brush border enzymes

Histology of the small intestine
Histology of the duodenum and ileum

Intestinal juice and brush-border enzymes

- Intestinal juice
 - 1-2L daily
 - Contains water and mucus, slightly alkaline
 - Provide liquid medium aiding absorption

- Brush border enzymes
 - Inserted into plasma membrane of absorptive cells
 - Some enzymatic digestion occurs at surface rather than just in lumen
 - α-dextrinase, maltase, sucrase, lactase, aminopeptidase, dipeptidase, nucleosidases and phosphatases

Mechanical Digestion

- Governed by myenteric plexus
- Segmentations
 - Localized, mixing contractions
 - Mix chyme and bring it in contact with mucosa for absorption
- Migrating motility complexes (MMC)
 - Type of peristalsis
 - Begins in lower portion of stomach and pushes food forward

Chemical digestion

- Carbohydrates
 - Pancreatic amylase
 - α-dextrinase, sucrase, lactase, maltase in brush border
 - Ends with monosaccharides which can be absorbed

- Proteins
 - Trypsin, chymotrypsin, carboxypeptidase, and elastase from pancreas
 - Aminopeptidase and dipeptidase in brush border

Lipids and Nucleic Acids

- Lipids
 - Pancreatic lipase most important in triglyceride digestion
 - Emulsification by bile salts increases surface area
 - Amphipathic – hydrophobic and hydrophilic regions
- Nucleic acids
 - Ribonuclease and deoxyribonuclease in pancreatic juice
 - Nucleosidases and phosphatases in brush border

Absorption of:

- Monosaccharides
 - All dietary carbohydrates digested are absorbed
 - Only indigestible cellulose and fibers left in feces
 - Absorbed by facilitated diffusion or active transport into blood

- Amino acids, dipeptides and tripeptides
 - Most absorbed as amino acids via active transport into blood
 - ½ of absorbed amino acids come from proteins in digestive juice and dead mucosal cells
Lipids

- All dietary lipids absorbed by simple diffusion
- Short-chain fatty acids go into blood for transport
- Long-chain fatty acids and monoglycerides
 - Large and hydrophobic
 - Bile salts form micelles to ferry them to absorptive cell surface
 - Reform into triglycerides forming chylomicrons
 - Leave cell by exocytosis
 - Enter lacteals to eventually enter blood with protein coat of chylomicron keeping them suspended and separate

Absorption of digested nutrients in the small intestine

Absorption of:

- Electrolytes
 - From GI secretions or food
 - Sodium ions (Na+) reclaimed by active transport
 - Other ions also absorbed by active transport
- Vitamins
 - Fat-soluble vitamins A, D, E, and K absorbed by simple diffusion and transported with lipids in micelles
 - Most water-soluble vitamins also absorbed by simple diffusion
- Water
 - 9.3L comes from ingestion (2.3L) and GI secretions (7.0L)
 - Most absorbed in small intestine, some in large intestine
 - Only 100mL excreted in feces
 - All water absorption by osmosis

Daily volumes of fluid ingested, secreted, absorbed, and excreted from the GI tract

Large intestine

- Overall function to complete absorption, produce certain vitamins, and form and expel feces
- 4 major regions – cecum, colon, rectum, and anal canal
- Ileocecal sphincter between small and large intestine
- Colon divided into ascending, transverse, descending and sigmoid
- Opening of anal canal (anus) guarded by internal anal sphincter of smooth muscle and external anal sphincter of skeletal muscle

Anatomy of the large intestine
Large Intestine

- Same 4 layers
- Mucosa – mostly absorptive and goblet cells
 - No circular folds or villi
 - Does have microvilli
- Submucosa
- Muscularis
 - Longitudinal muscle modified to form teniae coli
 - Forms haustra – pouches
- Serosa

Digestion of the Large Intestine

- Mechanical digestion
 - Haustral churning
 - Peristalsis
 - Mass peristalsis – drives contents of colon toward rectum
- Chemical digestion
 - Final stage of digestion through bacterial action
 - Ferment carbohydrates, produce some B vitamins and vitamin K
 - Mucus but no enzymes secreted
- Remaining water absorbed along with ions and some vitamins

Histology of the large intestine

- Phases of digestion
 - Cephalic phase
 - Smell, sight, thought or initial taste of food activates neural centers – prepares mouth and stomach for food to be eaten
 - Gastric phase
 - Neural and hormonal mechanisms promote gastric secretion and motility
 - Intestinal phase
 - Begins when food enter small intestine
 - Slows exit of chyme from stomach
 - Stimulates flow of bile and pancreatic juice

The gastric phase of digestion
End of Chapter 24

Copyright 2009 John Wiley & Sons, Inc.
All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publishers assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.