MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) What term refers to the volume occupied by 1 mol of any gas at STP?							
A) molar volume	2						
B) STP volume							
C) Avogadro's v	olume						
D) standard volu	ıme						
E) none of the al	oove						
2) What term refers to	the mass of 1 mol o	of substance expresse	ed in grams?		2)		
2) What term refers to the mass of 1 mol of substance expressed in grams? A) gram-formula mass							
B) molar mass							
C) gram-atomic	mass						
D) gram-molecu							
E) none of the al							
,							
3) How many males of carbon monoyide react with 1 mal of avvgon gas according to the balanced							
3) How many moles of carbon monoxide react with 1 mol of oxygen gas according to the balanced chemical equation?							
-							
$2 \operatorname{CO}(g) + 0$	$O_2(g) \xrightarrow{\Delta} 2 CO_2(g)$						
A) 3 mol							
B) 2 mol							
C) 4 mol							
D) 1 mol							
E) none of the al	oove						
4) Assuming similar conditions, how many liters of steam, H ₂ O, react to produce 1 L of hydrogen							
gas?							
C(a) . Ha($O(g) \xrightarrow{\Delta} CO(g) + H$	Io(a)					
	$\mathcal{D}(g) \longrightarrow \mathcal{CO}(g) + \mathcal{F}_{g}$	12(8)					
A) 4 L							
B) 3 L							
C) 2 L							
D) 1 L							
E) none of the ab	oove						
					5)		
5) In an experiment, 1.201 g of charcoal reacts with 6.414 g of powdered sulfur. Using the							
conservation of ma	ss law, predict the r	nass of product.					
C(s) +	$2 S(s) \xrightarrow{\Delta} CS_2(g)$						
	B) 7.615 g	C) 4 408 o	D) 5.213 g	E) 8.816 g			
11) 14.027 6	<i>D)</i> 7.010 g	C) 4.400 g	D) 3.213 g	L) 0.010 g			
6) What is the mass of silver metal produced from 6.35 g of copper? Cu(s) +AgNO ₃ (aq) →Cu(NO ₃) ₂ (aq) +Ag(s)							
				E) 04 6			
A) 1.08 g	В) 0.187 g	C) 0.747 g	D) 0.540 g	E) 21.6 g			

7) What is the mass of insoluble lead(II) iodide (461.0 g/mol) produced from 0.830 g of potassium							
	ol) and aqueous lead		C	•	7)		
_Pb(NO	$3)2(aq) + _KI(s) \rightarrow _K$	$PbI_2(s) + _KNO_3(aq)$					
A) 1.15 g	B) 0.598 g	C) 2.31 g	D) 0.149 g	E) 4.61 g			
8) What is the mass of aluminum metal that reacts to give 1.00 g of hydrogen gas?							
	$_$ HCl(aq) \rightarrow $_$ AlCl ₃						
A) 13.4 g	B) 20.0 g	C) 4.46 g	D) 26.7 g	E) 8.90 g			
9) What is the mass of dioxide gas at STP		(597.99 g/mol) that do	ecomposes to release	50.0mL of carbon	9)		
Bi2(CO	$3)3(s) \xrightarrow{\Delta} $ _Bi ₂ O ₃ ($(s) + _{CO_2(g)}$					
			D) 0.000445 g	E) 0.445 g			
10) What is the volume of hydrogen gas at STP released from 2.30 g of sodium metal and water? $_Na(s) + _H2O(l) \rightarrow _NaOH(aq) + _H2(g)$							
	B) 1.12 L		D) 0.100 L	E) 4.48 L			
11) Considering the limiting reactant concept, how many moles of C are produced from the reaction of							
2.00 mol A and 4.5	60 mol B?		-				
	$(g) \rightarrow 2 C(g)$						
A) 4.50 mol							
B) 2.00 mol							
C) 3.00 mol							
D) 4.00 mol	1						
E) none of the a	bove						
12) Starting with 1.550	g of potassium chlo	orate, a student release	es 0.617 g of oxygen g	as. If the	12)		
calculated mass of	oxygen gas is 0.607	g, what is the percent	yield?				
A) 98.4%	B) 39.8%	C) 255%	D) 102%	E) 39.2%			
13) Considering the li	miting reactant, wha	t is the volume of the	excess reactant that re	emains after the	13)		
	L of methane gas and $2 O_2(g) \rightarrow CO_2(g) + 2$	l 75.0 mL of oxygen ga H2O(g)	as? (Assume constant	conditions.)			
A) 50.0 mL O ₂	207	2 (8)					
B) 25.0 mL O ₂							
C) 12.5 mL CH ₄	l						
D) 25.0 mL CH ₄							
E) none of the a							
14) Considering the limiting reactant, what is the mass of iron produced from 75.0 g of iron(II) oxide (71.85 g/mol) and 25.0 g of magnesium metal?							
FeO(<i>l</i>) + N	$Mg(l) \xrightarrow{\Delta} Fe(l) + Mg(l)$	O(s)					
	B) 29.1 g		D) 28.7 g	E) 58.3 g			
15) Starting with 0.657	g of lead(II) nitrate,	a student collects 0.92	25 g of precipitate. If	the calculated	15)		
	e is 0.914 g, what is t		_				
A) 101%	B) 71.9%	C) 98.8%	D) 139%	E) 71.0%			