CHEM 1411 - STUDY-GUIDE-for-TEST-2

(CHAPTERS 4, 5 and 6)

1. Which of the following compounds is a strong electrolyte?
A) $\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{CH}_{3} \mathrm{OH}$
C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
D) HF
E) NaF

Ans: E
2. Which of the following compounds is a nonelectrolyte?
A) NaOH
D) KF
B) HNO_{3}
E) $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
C) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (ethanol)
Ans: C
3. Based on the solubility rules, which one of the following compounds should be insoluble in water?
A) NaCl
B) MgBr_{2}
C) FeCl_{2}
D) AgBr
E) ZnCl_{2}

Ans: D
4. Which of the following will occur when solutions of $\mathrm{CuSO}_{4}(\mathrm{aq})$ and $\mathrm{BaCl}_{2}(\mathrm{aq})$ are mixed?
A) A precipitate of CuCl_{2} will form; Ba^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
B) A precipitate of CuSO_{4} will form; Ba^{2+} and Cl^{-}are spectator ions.
C) A precipitate of BaSO_{4} will form; Cu^{2+} and Cl^{-}are spectator ions.
D) A precipitate of BaCl_{2} will form; Cu^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
E) No precipitate will form.

Ans: C
5. Identify the precipitate(s) formed when solutions of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}), \mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq})$, and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$ are mixed.
A) PbSO_{4}
D) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\mathrm{NH}_{4} \mathrm{ClO}_{4}$
B) $\quad \mathrm{MgSO}_{4}$
E) $\quad \mathrm{PbSO}_{4}$ and MgSO_{4}
C) $\quad \mathrm{NH}_{4} \mathrm{ClO}_{4}$
Ans: A
6. Identify the correct net ionic equation for the reaction that occurs when solutions of AgNO_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ are mixed.
A) $\quad \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
B) $\quad \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$
C) $\quad \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
D) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
E) $\quad \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{AgNO}_{3}(\mathrm{~s})$

Ans: D Category: Medium
7. Which of the following compounds is a weak acid?
A) HF
C) HBr
D) HI
E) HClO_{4}
Ans: A
8. Identify the major ions present in an aqueous LiOH solution.
A) $\mathrm{Li}^{2+}, \mathrm{O}^{-}, \mathrm{H}^{-}$
B) $\mathrm{Li}^{+}, \mathrm{OH}^{-}$
C) $\mathrm{LiO}^{-}, \mathrm{H}^{+}$
D) $\mathrm{Li}^{+}, \mathrm{O}^{2-}, \mathrm{H}^{+}$
E) $\mathrm{Li}^{-}, \mathrm{OH}^{+}$

Ans: B
9. Identify the correct net ionic equation for the reaction that occurs when solutions of HF and KOH are mixed.
A) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $\mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{F}^{-}(\mathrm{aq})$
C) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{K}^{+}(\mathrm{aq})$
D) $\mathrm{HF}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KF}(\mathrm{s})$
E) $\quad \mathrm{HF}(\mathrm{aq})+\mathrm{KOH}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KF}(\mathrm{aq})$

Ans: B
10. The oxidation number of Mn in KMnO_{4} is
A) $+8 \quad$ B) +7
C) +5
D) -7
E) -8
Ans: B
11. For the chlorate ion, $\mathrm{ClO}_{3}{ }^{-}$, what are the oxidation states of the Cl and O , respectively?
A) $-1,-2$
B) $+5,-2$
C) $+6,-2$
D) $+7,-2$
E) $+2,-1$

Ans: B
12. Determine the correct oxidation numbers for all three elements in $\mathrm{Ca}(\mathrm{ClO})_{2}$ in the order that the elements are shown in the formula?
A) $+2,+1,-2$
B) $+2,-2,+1$
C) $+2,-3,+2$
D) $-2,+2,-1$
E) $-2,+3,-2$
Ans: A
13. How many total electrons are transferred in the following reaction?
$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}$ (s)
A) 1
B) 2
C) 3
D) 4
E) 5
Ans: B
14. Which one of the following is a redox reaction?
A) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
B) $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbBr}_{2}(\mathrm{~s})$
C) $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
D) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
E) $\quad \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

Ans: A
15. Identify the oxidizing agent in the following chemical reaction.
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}$
A) MnO_{4}^{-}
B) $\mathrm{H}_{2} \mathrm{SO}_{3}$
C) Mn^{2+}
D) $\mathrm{SO}_{4}{ }^{2-}$
E) H^{+}

Ans: A
16. Identify the reducing agent in the following chemical reaction.
$\mathrm{Cd}+\mathrm{NiO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cd}(\mathrm{OH})_{2}+\mathrm{Ni}(\mathrm{OH})_{2}$
A) Cd
B) NiO_{2}
C) $\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Cd}(\mathrm{OH})_{2}$
E) $\mathrm{Ni}(\mathrm{OH})_{2}$
Ans: A
17. Predict the products of the following single replacement reaction.

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow
$$

A) $\quad \mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{4}(\mathrm{aq})$
D) $\mathrm{FeCuSO}_{4}(\mathrm{aq})$
B) $\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}(\mathrm{s})+\mathrm{SO}_{4}(\mathrm{aq})$
E) $\quad \mathrm{FeO}(\mathrm{s})+\mathrm{CuSO}_{3}(\mathrm{aq})$
C) $\mathrm{CuS}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
Ans: A
18. Which of the following represents a hydrogen displacement reaction?
A) $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
C) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D) $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
E) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Ans: E
18. The reaction below can be classified as which type of reaction?
$2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq})$
A) Combination reaction
D) Disproportionation reaction
B) Acid-base neutralization reaction
E) Combustion reaction
C) Hydrogen displacement reaction

Ans: D
19. What type of reaction is the following?
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A) Combination reaction D) Disproportionation reaction
B) Acid-base neutralization reaction E) Combustion reaction
C) Hydrogen displacement reaction

Ans: B
20. Categorize the following reaction as an acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation reaction.
$\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$

Ans: Precipitation

21. Describe the procedure used to make 3.0 liters of a 2.0 M KCl solution, starting with solid KCl and water.

Ans: Determine the molar mass of KCl , which is $74.55 \mathrm{~g} / \mathrm{mol}$; weigh out $447.3 \mathrm{grams}(6 \mathrm{~mol})$ of KCl ; dissolve the KCl in enough water to form exactly 3 liters of solution.
22. The solubility of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is 130.5 grams per liter at $0^{\circ} \mathrm{C}$. How many moles of dissolved salt are present in 4.0 liters of a saturated solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ at $0^{\circ} \mathrm{C}$?

Ans: 2.0 moles
23. During a titration the following data were collected. A $10 . \mathrm{mL}$ portion of an unknown monoprotic acid solution was titrated with $1.0 \mathrm{M} \mathrm{NaOH} ; 40 . \mathrm{mL}$ of the base were required to neutralize the sample. How many moles of acid are present in 2.0 liters of this unknown solution?

Ans: 8.0 moles
24. Identify the $\mathrm{Br} ø$ nsted acid in the following reaction.
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
Ans: $\mathrm{H}_{2} \mathrm{O}$
25. Write the balanced molecular and net ionic equations for the reaction that would occur between $\mathrm{CuCl}_{2}(\mathrm{aq})$ and $\mathrm{Pb}(\mathrm{s})$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."

Ans: Molecular equation: $\mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{PbCl}_{2}(\mathrm{~s})$
Net ionic equation: $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{PbCl}_{2}(\mathrm{~s})$
26. TRUE/FALSE: The following equation is an example of a net ionic equation.

$$
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

Ans: False
27. TRUE/FALSE: Hydrogen is oxidized in the following chemical reaction. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
Ans: True
28. TRUE/FALSE: The following reaction is a redox reaction.

$$
\mathrm{CaC}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HCCH}(\mathrm{~g})+\mathrm{CaO}(\mathrm{~s})
$$

Ans: False

29. What will happen to the height (h) of the mercury column in the manometer shown below if the stopcock is opened, given that the atmospheric pressure is 755 mmHg ?

A) h will decrease
B) h will not change
C) h will increase
D) not enough information given to answer the question

Ans: A
30. The pressure of a gas sample was measured to be 654 mmHg . What is the pressure in kPa ? $(1 \mathrm{~atm}=1.01325$ $\times 10^{5} \mathrm{~Pa}$)
A) 87.2 kPa
B) 118 kPa
C) $\quad 6.63 \times 10^{4} \mathrm{kPa}$
D) $\quad 8.72 \times 10^{4} \mathrm{kPa}$
E) $\quad 8.72 \times 10^{7} \mathrm{kPa}$

Ans: A
31. Which of the following statements is consistent with Boyle's Law concerning an ideal gas?
A) At constant temperature and moles, a plot of volume versus pressure is linear.
B) At constant pressure and volume, a plot of temperature versus moles is linear.
C) At constant pressure and moles, a plot of temperature versus volume is linear.
D) At constant temperature and moles, a plot of pressure versus the inverse of volume is linear.
E) At constant temperature and pressure, a plot of moles versus volume is linear.

Ans: D
32. A 45 mL sample of nitrogen gas is cooled from $135^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ in a container that can contract or expand at constant pressure, what is the new volume of the nitrogen gas?
$\begin{array}{lllll}\text { A) } 64 \mathrm{~mL} & \text { B) } 5.0 \mathrm{~mL} & \text { C) } 410 \mathrm{~mL} & \text { D) } 32 \mathrm{~mL} & \text { E) } 41 \mathrm{~mL}\end{array}$
Ans: D
33. If the pressure on a gas sample is tripled and the absolute temperature is quadrupled, by what factor will the volume of the sample change?
A) 12
B) $4 / 3$
C) $3 / 4$
D) $1 / 3$
E) 4
Ans: B
34. Calculate the number of moles of gas contained in a $10.0 \mathrm{~L} \operatorname{tank} \mathrm{at} 22^{\circ} \mathrm{C}$ and $105 \mathrm{~atm} .(\mathrm{R}=0.08206$
$\mathrm{L} \cdot \mathrm{atm} / \mathrm{K} \cdot \mathrm{mol}$)
A) $1.71 \times 10^{-3} \mathrm{~mol}$
B) 0.0231 mol
C) 1.03 mol
D) 43.4 mol
E) 582 mol
Ans: D
35. How many atoms of He gas are present in a 450 mL container at $35^{\circ} \mathrm{C}$ and 740 mmHg ?
A) 0.017 He atoms
B) 0.068 He atoms
D) $1.0 \times 10^{22} \mathrm{He}$ atoms
E) $\quad 7.9 \times 10^{24} \mathrm{He}$ atoms
C) $1.2 \times 10^{5} \mathrm{He}$ atoms

Ans: D
36. Calculate the density, in g / L, of SF_{6} gas at $27^{\circ} \mathrm{C}$ and 0.500 atm pressure.
A) $3.38 \times 10^{-3} \mathrm{~g} / \mathrm{L}$
B) $2.96 \mathrm{~g} / \mathrm{L}$
C) $22.4 \mathrm{~g} / \mathrm{L}$
D) $32.9 \mathrm{~g} / \mathrm{L}$
E) $3.38 \mathrm{~kg} / \mathrm{L}$

Ans: B
37. A 0.271 g sample of an unknown vapor occupies 294 mL at $140 .{ }^{\circ} \mathrm{C}$ and 847 mmHg . The empirical formula of the compound is CH_{2}. What is the molecular formula of the compound?
A) CH_{2}
B) $\mathrm{C}_{2} \mathrm{H}_{4}$
C) $\mathrm{C}_{3} \mathrm{H}_{6}$
D) $\mathrm{C}_{4} \mathrm{H}_{8}$
E) $\mathrm{C}_{6} \mathrm{H}_{12}$

Ans: B
38. What volume of sulfur dioxide gas at $45^{\circ} \mathrm{C}$ and 723 mmHg will react completely with 0.870 L of oxygen gas at constant temperature and pressure?
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\begin{array}{ll}\text { A) } 0.0317 \mathrm{~L} & \text { B) } 0.0634 \mathrm{~L}\end{array}$
C) 0.870 L
D) 1.74 L
E) 3.48 L
Ans: D
39. How many liters of chlorine gas at $25^{\circ} \mathrm{C}$ and 0.950 atm can be produced by the reaction of 12.0 g of MnO_{2} with excess $\mathrm{HCl}(\mathrm{aq})$ according to the following chemical equation?
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$
A) $5.36 \times 10^{-3} \mathrm{~L}$
B) 0.138 L
C) 0.282 L
D) 3.09 L
E) 3.55 L

Ans: E
40. If equal masses of $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{HBr}(\mathrm{g})$ are in separate containers of equal volume and temperature, which one of these statements is true?
A) The pressure in the O_{2} container is greater than that in the HBr container.
B) There are more HBr molecules than O_{2} molecules.
C) The average velocity of the O_{2} molecules is less than that of the HBr molecules.
D) The average kinetic energy of HBr molecules is greater than that of O_{2} molecules.
E) The pressures of both gases are the same.

Ans: A
41. A sample of mercury(II) oxide is placed in a 5.00 L evacuated container and heated until it decomposes entirely to mercury metal and oxygen gas. The container is then cooled to $25^{\circ} \mathrm{C}$. One now finds that the gas pressure inside the container is 1.73 atm . What mass of mercury(II) oxide was originally placed into the container?
A) $1.51 \mathrm{~g} \quad$ B) 45.6 g
C) 76.6 g
D) 913 g
E) 153 g
Ans: E
42. What is the pressure (mmHg) of the sample of gas trapped in the closed-tube mercury manometer shown below if atmospheric pressure is 751 mmHg and $\mathrm{h}=17.3 \mathrm{~cm}$?

Ans: 173 mmHg
43. Define Avogadro's Law

Ans: At constant pressure and temperature, the volume of a gas is directly proportional to the number of moles of the gas present.
44. The following data describes an initial and final state for an ideal gas. Given that the amount of gas does not change in the process, what is the final volume (mL) of the gas?

	$\underline{\mathrm{P}}$	$\underline{\mathrm{V}}$	$\underline{\mathrm{T}}$
initial:	720 mmHg	235 mL	$25^{\circ} \mathrm{C}$
final:	860 mmHg	$?$	$15^{\circ} \mathrm{C}$

Ans: 190. mL

45. Heat is

A) a measure of temperature.
B) a measure of the change in temperature.
C) a measure of thermal energy.
D) a measure of thermal energy transferred between two bodies at different temperature.

Ans: D
46. An endothermic reaction causes the surroundings to
A) warm up.
D) decrease in temperature.
B) become acidic.
E) release CO_{2}.
C) condense.

Ans: D
47. An endothermic reaction causes the surroundings to
A) warm up.
D) decrease in temperature.
B) become acidic.
E) release CO_{2}.
C) condense.

Ans: D
48. Aluminum metal has a specific heat of $0.900 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Calculate the amount of heat required to raise the temperature of 10.5 moles of Al from $30.5^{\circ} \mathrm{C}$ to $225^{\circ} \mathrm{C}$.
A) 1.84 kJ
B) 2.41 kJ
C) 65.1 kJ
D) 49.6 kJ
E) 57.3 kJ
Ans: D
49. Three separate 3.5 g blocks of Al, Cu, and Fe at $25^{\circ} \mathrm{C}$ each absorb 0.505 kJ of heat. Which block reaches the highest temperature? The specific heats of Al, Cu, and Fe are $0.900 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}, 0.385 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and $0.444 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, respectively.
A) $\mathrm{Al} \quad \mathrm{B}) \mathrm{Cu}$
C) Fe
D) Al and Cu
E) Fe and Cu
Ans: B
50. If 10.6 moles of water at $35^{\circ} \mathrm{C}$ absorbs 12.30 kJ , what is the final temperature of the water? The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) $15^{\circ} \mathrm{C}$
B) $20^{\circ} \mathrm{C}$
C) $35^{\circ} \mathrm{C}$
D) $50 .{ }^{\circ} \mathrm{C}$
E) $312^{\circ} \mathrm{C}$

Ans: D
51. Which of the following processes is endothermic?
A) $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C) $3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Ans: D
52. The reaction that represents the standard enthalpy of formation for acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$, a common ingredient in nail polish remover is:
A) $3 \mathrm{C}($ graphite $)+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{l})$
B) $6 \mathrm{C}($ diamond $)+6 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{l})$
C) 3 C (diamond) $+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{l})$
D) $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{l}) \rightarrow 3 \mathrm{C}($ graphite $)+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
E) $\quad \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{l})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Ans: A
53. When 0.560 g of $\mathrm{Na}(\mathrm{s})$ reacts with excess $\mathrm{F}_{2}(\mathrm{~g})$ to form $\mathrm{NaF}(\mathrm{s}), 13.8 \mathrm{~kJ}$ of heat is evolved at standard-state conditions. What is the standard enthalpy of formation $\left(\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\right)$ of $\mathrm{NaF}(\mathrm{s})$?
A) $\quad-570 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-24.8 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-7.8 \mathrm{~kJ} / \mathrm{mol}$
D) $24.8 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 570 \mathrm{~kJ} / \mathrm{mol}$

Ans: A
54. Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ undergoes combustion according to the following thermochemical equation:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-11,020 \mathrm{~kJ} / \mathrm{mol} .
$$

Given that $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$, calculate the standard enthalpy of formation of octane.
A) $\quad-210 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-420 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-11,230 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 420 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 22,040 \mathrm{~kJ} / \mathrm{mol}$
Ans: A
55. Glycine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$, is important for biological energy. The combustion reaction of glycine is given by the equation

$$
4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}(\mathrm{~s})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{~N}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-3857 \mathrm{~kJ} / \mathrm{mol}
$$

Given that $\Delta \mathrm{H}^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$, calculate the enthalpy of formation of glycine.
A) $\quad-3,178 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-268.2 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-964 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 2,149 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-537.2 \mathrm{~kJ} / \mathrm{mol}$
Ans: C
56. During volcanic eruptions, hydrogen sulfide gas is given off and oxidized by air according to the following chemical equation:

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the standard enthalpy change for the above reaction given:

$$
\begin{array}{ll}
3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=146.9 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-296.4 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

A) $\quad-1036.1 \mathrm{~kJ} / \mathrm{mol}$
D) $443.3 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-742.3 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 742.3 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-149.5 \mathrm{~kJ} / \mathrm{mol}$
Ans: A
57. Calculate the standard enthalpy change for the reaction

$$
2 \mathrm{~A}+2 \mathrm{~A}_{2}+4 \mathrm{AB}+\mathrm{B} \rightarrow 5 \mathrm{~A}_{2} \mathrm{~B}
$$

Given:

$$
\begin{array}{ll}
2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{~A}_{2} \mathrm{~B} & \Delta \mathrm{H}^{\circ}=-25.0 \mathrm{~kJ} / \mathrm{mol} \\
2 \mathrm{~A}_{2} \mathrm{~B} \rightarrow 2 \mathrm{AB}+\mathrm{A}_{2} & \Delta \mathrm{H}^{\circ}=35.0 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

A) $\quad-95.0 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 10.0 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-60.0 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 45.0 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-15.0 \mathrm{~kJ} / \mathrm{mol}$
Ans: A
58. An average home in Colorado requires 20. GJ of heat per month. How many grams of natural gas (methane) must be burned to supply this energy?
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-890.4 \mathrm{~kJ} / \mathrm{mol}$
A) $7.1 \times 10^{-4} \mathrm{~g}$
D) $2.2 \times 10^{4} \mathrm{~g}$
B) $1.4 \times 10^{3} \mathrm{~g}$
E) $3.6 \times 10^{5} \mathrm{~g}$
C) $1.4 \times 10^{4} \mathrm{~g}$

Ans: E
59. A gas is compressed in a cylinder from a volume of 20.0 L to 2.0 L by a constant pressure of 10.0 atm . Calculate the amount of work done on the system.
A) $-1.81 \times 10^{4} \mathrm{~J}$
B) -180 J
C) 180 J
D) $1.01 \times 10^{4} \mathrm{~J}$
E) $1.81 \times 10^{4} \mathrm{~J}$
Ans: E
60. The bond enthalpy of the $\mathrm{Br}-\mathrm{Cl}$ bond is equal to $\Delta \mathrm{H}^{\circ}$ for the reaction

$$
\mathrm{BrCl}(\mathrm{~g}) \rightarrow \mathrm{Br}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) .
$$

Use the following data to find the bond enthalpy of the $\mathrm{Br}-\mathrm{Cl}$ bond.

$$
\begin{array}{ll}
\mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=30.91 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=192.9 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=243.4 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Br}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=29.2 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

A) $14.6 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 438.0 \mathrm{~kJ} / \mathrm{mol}$
B) $203.5 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 407.0 \mathrm{~kJ} / \mathrm{mol}$
C) $219.0 \mathrm{~kJ} / \mathrm{mol}$
Ans: C
61. Given the following $\Delta \mathrm{H}^{\circ}$ values,

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=187.6 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\text { calculate } \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ} \text { for the reaction } \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \text {, }
$$

$$
\text { Ans: }-98.2 \mathrm{~kJ} / \mathrm{mol}
$$

62. A 0.3423 g sample of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$, was burned in a bomb calorimeter. The temperature of the calorimeter and the 1.000 kg of water contained therein rose from $20.22^{\circ} \mathrm{C}$ to $22.82^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $2.21 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The heat capacity of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. What is the heat of combustion, in kilojoules, per gram of pentane?
Ans: 48.6 kJ/g
63. TRUE/FALSE: If $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=-1203.6 \mathrm{~kJ} / \mathrm{mol}$.

For $\mathrm{Mg}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$, the enthalpy change is $\Delta \mathrm{H}=-601.8 \mathrm{~kJ} / \mathrm{mol}$.
Ans: True

CHEM 1411 Formulas and Constants

mass of proton $=1.00728 \mathrm{amu}$
$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{K}={ }^{0} \mathrm{C}+273.15$
$1 \mathrm{~g}=6.022 \times 10^{23} \mathrm{amu}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$

Temperature scales/Conversion:

- $\mathrm{T}_{\mathbf{K}}=\mathrm{T}_{\mathbf{C}}+273 \quad$ (Celsius to Kelvin)
- $\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathbf{K}}-273$ (Kelvin to Celsius)
- $\mathrm{T}_{\mathbf{F}}=\left(1.8 \times \mathrm{T}_{\mathrm{C}}\right)+32$ (Celsius to Fahrenheit)
- $\mathrm{T}_{\mathbf{C}}=\left(\mathrm{T}_{\mathbf{F}}-32\right) / 1.8$ (Fahrenheit to Celsius)

Percent by mass $=\quad \frac{\text { mass of solute }}{[\text { mass of solute }+ \text { mass of solvent }]} \times 100 \%$
Two-component solution:
Mole fraction of solute A: $\mathbf{X A}_{\mathbf{A}}=$
moles of solute A
moles of solute $\mathrm{A}+$ moles of solvent B
Molarity = number of moles of solute in $\mathbf{1} \mathbf{L}$ of solution:
Molarity

$$
=
$$

moles of solute Liters of solution

Molality $=$ number of moles of solute dissolved in $1 \mathrm{~kg}(1000 \mathrm{~g})$ of solvent:
Molality $\quad=\quad \frac{\text { moles of solute }}{\text { Mass of solvent }(1 \mathrm{~kg})}$

Density = Mass / Volume.

