

07Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Memory

Memory is defined as the mental processes that enable one to acquire, retain, and retrieve information. Memory involves three fundamental processes of encoding, storage, and retrieval.

07 Which is the Correct Penny?

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

7 Three Key Processes of Memory

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Figure 7.2 Three key processes in memory

7 The Role of Attention

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07 Levels of Encoding

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Strongternied Hirracolding

Would the word fit in the Does the word sentence: "He met a rhyme with weight?"

_____on the street?"

Yes

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Ways to Improve Encoding

Visual Imagery

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Stage Model of Memory Chapter 1-2-3-4-5-6-7-8-9-10-11-12-

Figure 7.6 The Atkinson and Schiffrin model of memory storage

07

Sensory Memory

- Function—holds
 information long enough to
 be processed for basic
 physical characteristics
- Capacity—large
 - can hold many items at once
- Duration—very brief retention of images
 - 3 seconds for visual info
 - 2 seconds for auditory info

07 Sensory Memory

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

• Sensory memory is the 1st of 2 temporary storage buffers that information must pass before reaching longterm storage. There is sensory memory for each of the 5 senses

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07 Chapter

Sensory Memory

Although we receive info from all 5, we are going to discuss the main 2 we use a humans

- iconic memory: visual information
- echoic memory: auditory information

O7
Chapter

Sensory Memory

- Sensory memory forms automatically, without attention or interpretation
- Attention is needed to <u>transfer</u> information to working memory

Sensory Memory Chapter -1-2-3-4-5-6-0-8-9-10-11-

- Visual sensory memory—brief memory of an image or icon. Also called iconic memory.
- Auditory sensory memory—brief memory of a sound or echo. Also called echoic memory.
- Auditory sensory memories may last a bit longer than visual sensory memories.

Short term or working memory Chapter -1-2-3-4-5-6-0-8-9-10-11-12-13-4

07 Short-term Memory

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Short Term Memory (STM)

- Limited duration about 20 seconds without rehearsal
 - Rehearsal the process of repetitively verbalizing or thinking about the information
- Limited capacity magical number 7 plus or minus 2 (between 5 and 9 items generally)
 - Chunking grouping familiar stimuli for storage as a single unit

07

Short-term Memory

- Function—conscious processing of information
 - where information is actively worked on
- Capacity—limited (holds 7 +/- 2 items)
- Duration—brief storage (about 20-30 seconds)

7 The Magic Number Seven +/-2

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Chunking FBBMBCCMBBM

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07

Chunking

- Grouping small bits of information into larger units of information
 - expands working memory load
- Which is easier to remember?
 - -483792516
 - 483 792 516

Maintenance Rehearsal

Chapter • 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10

 Mental or verbal repetition of information allows information to remain in working memory longer than the usual 30 seconds

Maintenance Rehearsal Sensory Attention **Working or** Sensory **Short-term Memory** Input Memory

- Loss of information not only due to decay
- Baddeley (1986) 3 components of working memory
 - Phonological rehearsal loop
 - Visuospatial sketchpad
 - Executive control system

Figure 7.7 Short-term memory as working memory

07 Chapter Maintenance rehearsal Maintenance rehearsal Elaborative rehearsal Elaborative maintains information helps encode information rehearsal for storage in long-term in short-term memory. memory. Encoding and storage Attention Long-term Sensory **Short-term** memory memory memory Retrieval Forgetting Forgetting Information that is not Information that is not rehearsed or encoded attended to quickly fades and is forgotten. is forgotten after about 20 seconds.

Human Memory

Short-term Memory as Working Memory

Eposodic Buffer Prepares short-term memory information for long-term memory

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07 Long-term Memory

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

O7 Long-Term Memory Chapter -1-2-3-4-5-6-0-8-9-10-11-12-1

- Encoding—process that controls movement from working to long-term memory store
- Retrieval—process that controls flow of information from long-term to working memory store

Human Memory

Long-Term Memory

- Permanent storage?
 - Flashbulb memories
- How is knowledge represented and organized in memory?
 - Schemas and Scripts
 - Semantic Networks
 - Connectionist Networks and PDP (parallel distributed processing) Models

07 Flashbulb Memory

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Flashbulb Memories

Do you remember where you were when this occurred?

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07

Flashbulb Memory

*The recall of very specific images or details surrounding a vivid, rare, or significant personal event; details may or may not be accurate (e.g., 9/11, wedding day, high school graduation, Hurricane Ike)

O7 Semantic Network Model

- Mental links between concepts
 - common properties provide basis for mental link
- Shorter path between two concepts = stronger association in memory
- Activation of a concept starts decremental spread of activity to nearby concepts

Thow is Knowledge Represented and Organized in Memory?

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07

Schemas and Scripts

- Schema—mental representation of an object, scene, or event
 - Example: schema of a countryside may include green grass, hills, farms, a barn, cows, etc.
- Often fit memories into existing beliefs or schemas
- Recall not an exact replica of original events
- Recall is a construction built and rebuilt from various sources

O7
Chapter

Automatic Versus Effortful Encoding

- Automatic processing
 - Unconscious encoding of information
 - Examples:
 - What did you eat for lunch today?
 - Was the last time you studied during the day or night?
 - You know the meanings of these very words you are reading. Are you actively trying to process the definition of the words?

O7 Chapter

Automatic Versus Effortful Encoding

Effortful processing

- Requires attention and conscious effort
- Examples:
 - Memorizing your notes for your upcoming Introduction to Psychology exams
 - Repeating a phone number in your head until you can write it down

7 Types of Long-term Memory

- Explicit memory—memory with awareness; information can be consciously recollected; also called <u>declarative</u> memory
- Implicit memory—memory without awareness; memory that affects behavior but cannot consciously be recalled; also called nondeclarative memory

Human Memory

O7

Explicit Memory

- Declarative or conscious memory
- Memory consciously recalled or declared
- Can use explicit memory to directly respond to a question
- Two subtypes of explicit memory

Episodic Memory

- Memory tied to your own personal experiences
- Examples:
 - What is your birthdate?
 - Do you like to eat caramel apples?

Q: Why are these explicit memories?

A: Because you can actively declare your answers to these questions

Semantic Memory

- Memory not tied to personal events
- General facts and definitions about the world
- Examples:
 - How many tires on a car?
 - What is a cloud?
 - What color is a banana?

Semantic Memory

Q: Why are these explicit memories?

A: Because you can actively declare your answers

- *Important note: Though you may have had personal experiences with these items, your ability to answer the questions does NOT depend on tying the items to your past
 - i.e., you do not have to recall the time last week when you ate a banana to say that bananas are yellow

Implicit Memory

- Chapter 1 2 3 4 5 6 7 8 9 10 11
 Nondeclarative memory
 - Influences your thoughts or behavior, but does not enter consciousness
 - Three subtypes—we will look only at one (<u>procedural</u>, the other 2 are emotional, and unconscious memories)

Procedural Memory

- Memory that enables you to perform specific learned skills or habitual responses
- Examples:
 - Riding a bike
 - Using the stick shift while driving (driving a standard)
 - Tying your shoe laces

Q: Why are these procedural memories implicit?

A: You don't have to consciously remember the steps involved in these actions to perform them

 Try to explain to someone how to tie a shoelace without using visual cues

Retrieval: Getting Information Out of Memory

- The tip-of-the-tongue phenomenon a failure in retrieval
 - Retrieval cues
- Reinstating the context
 - Context cues
- Reconstructing memories
 - Misinformation effect
- Source monitoring

Tip-of-the-Tongue (TOT) Experience 2-3-4-5-6-7-8-9-10-11-12-13-

- TOT—involves the sensation of knowing that specific information has been stored in long-term memory but being unable to retrieve it
- Can't retrieve info that you absolutely know is stored in your LTM

O7

Context cues

 Memories can also be reinstated by context cues. It is easier to recall longforgotten events if you return after a number of years to a place where you used to live

Encoding Specificity

- When conditions of retrieval are similar to conditions of encoding, retrieval is more likely to be successful
- You are more likely to remember things if the conditions under which you recall them are similar to the conditions under which you learned them

07 Encoding Specificity

- Chanter 1 2 3 4 5 6 7 8 9 10 12 13 14 15
 Contextual effects—environmental cues that help one recall the information
 - State dependent retrieval—physical, internal factors (i.e. study under the influence- recall information better in same state but still not as much as sober) *NOTE:
 Best method to learn and recall information-study sober and take the test sober!
 - Mood congruence—factors related to mood or emotions

Retrieval and Context Cues

Retrieval Cues

Word Definition

Favoritism shown or patronage granted by persons in high office to relatives or close friends

Retrieval Cue 1: Begins with "N"

Retrieval Cue 2: Ends in -ism

Retrieval Cue 3: First syllables rhymes with pep

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

3 Source Monitoring and Retrieval

Source Monitoring

The process of making inferences about the origins of memories

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Forgetting: When Memory Lapses

- Ebbinghaus's Forgetting Curve
- Retention the proportion of material retained
 - Recall
 - Recognition
 - Relearning

07 Ebbinghaus' Curve

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Why We Forget

- Ineffective Encoding
- Decay
- Interference
 - Proactive
 - Retroactive
- Retrieval failure
- Repression
 - Authenticity of repressed memories?
- Human Memory illusions
 - Controversy

Tencoding Problems and Decay

Chapter

Ineffective Encoding

Memories never stored due to lack of attention

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

© 2007 Thomson Higher Education Wemory

Figure 7.12 Retroactive and proactive interference

Interference

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

Example: Learning a new language interferes with ability to remember old language

Proactive Interference

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

- Opposite of retroactive interference
- When an OLD memory interferes with remembering NEW information
- Example: Memories of where you parked your car on campus the past week interferes with ability find car today (or speaking German and Spanish comes out)

07 Ways to Measure Forgetting

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Three Measures of Retention:

Recall Measure

Recognition Measure

Retention Measure

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Measures of Retrieval Chapter -1-2-3-4-5-6-0-8-9-0-11-12

- <u>Recall</u>—test of LTM that involves retrieving memories without cues; also termed free recall
- <u>Cued recall</u>—test of LTM that involves remembering an item of information in response to a retrieval cue
- Recognition—test of LTM that involves identifying correct information from a series of possible choices.
- Serial position effect—tendency to remember items at the beginning and end of a list better than items in the middle.

Retrieval Failure

- Encoding Specificity
- Transfer-Appropriate Processing

 (initial processing is similar to the measure of retention)
- Repression
 - Authenticity of repressed memories?
 - Memory illusions
 - Controversy

07 Ways to Measure Forgetting

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

The Difficulty of a Recognition Test Can Vary

Which is the correct answer?

The fourth president of the United States was:

- a. Jihomma Saettéerson
- b. Jame \(\frac{1}{2} \). We mrow dy
- c. Harry Quimoş nAdams
- d. James Madison

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07 Interference

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

07 Retrieval Failure

Encoding Specificity Principle

Value of a cue depends on how well it corresponds to the memory code formed during encoding

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

17 Motivated Forgetting

Chapter • 1 - 2

Repressed Memory

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

The Controversy of Repressed Memories

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Skepticte of Rie Represed et le Manyo il jh Edeyory

- Pourset ishimlo ire diviroluradan atheathy img thrimpurpose
- Represisits in risay astulea desponses tions until
- · Labratient inadvantally ingratema fiels ean amouse
- · Compteed structionstissman fis ilskeaso xuoaciatatiee
- Notaire empirical evidence
- Some court cases discredit existence of repressed memories
- Misinformation effect, source monitoring, and other researched areas show us that memory is not as reliable as many of us think

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Eyewitness Testimony Chapter 1-2-3-4-5-6-7-8-9-10-11-12-13

- Recall not an exact replica of original events
- Recall a construction built and rebuilt from various sources
- Often fit memories into existing beliefs or schemas
- Schema—mental representation of an object, scene, or event
 - Example: schema of a countryside may include green grass, hills, farms, a barn, cows, etc.

7 Source Confusion & Memory distortions

- A memory distortion that occurs when the true source of the memory is forgotten
- Can give rise to a false memory: a distorted or fabricated recollection of something that did not actually occur
- Memory can be distorted as people try to fit new info into existing schemas
- Giving misleading information after an event causes subjects to unknowingly distort their memories to incorporate the new misleading information

Loftus Experiment

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

- Subjects shown video of an accident between two cars
- Some subjects asked: How fast were the cars going when they smashed into each other?
- Others asked: How fast were the cars going when they hit each other?

Leading question:

"About how fast were the cars going when they *smashed* into each other?"

Loftus Results

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Word Used in Question

Average Speed Estimate

smashed collided bumped hit contacted

41 mph 39 mph 38 mph 34 mph 32 mph

Retrograde and Anterograde Amnesia

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

7 Anatomy of Memory

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Anatomy of memory

- Consolidation refers to a hypothetical process involving gradual conversion of information into durable memory codes for storage in long-term memory. These areas are those around the hippocampus, which comprise the medial temporal lobe.
- Other areas, such as the cortex, are involved in memory, but the search for the anatomy of memory is in its infancy.

07 Neural Circuitry of Memory

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Long-term Potentiation Neurogenesis

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Figure 7.17 Theories of independent memory systems

07 Types of Memory

Chapter • 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15

Human Memory

Encoding

Storage

Retrieval

Forgetting

Physiology of Memory

Gradually Losing the Ability to Remember

Dementia: Progressive deterioration and impairment of memory, reasoning, and other cognitive functions occurring as the result of a disease or a condition

Alzheimer's disease (AD): A progressive disease that destroys the brain's neurons, gradually impairing memory, thinking, language, and other cognitive functions, resulting in the complete inability to care for oneself; the most common form of dementia

Strategies for Boosting Memory

- Focus attention
- Commit the time
- Space study sessions
- Organize the information
- Elaborate on the material
- Use visual imagery
- Use a mnemonic device

- Explain it to a friend
- Reduce interference within a topic
- Counteract the serial position effect
- Use contextual clues
- Sleep on it
- Forget the ginkgo biloba

Trailer for the movie "Memento"

http://www.youtube.com/watch?v=Rq9eM4Z XRgs/