

Know Your Calculator!

1. Priority of Operations: Do the following calculation in the order written without using your calculator, then check your answer with your calculator without using parentheses:

$$
2+3 \times 2+1-3^{2}+2 \div 3=
$$

2. Scientific Notation: Do this calculation without touching the multiplication (X) key!

$$
\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{sec}}{2.89 \times 10^{-7} \mathrm{~m}}=
$$

3. Most scientific calculators have built-in statistics functions. For the following set of numbers,

$$
3.5,4.0,4.1,3.6, \text { and } 3.8
$$

calculate the mean (\bar{x}), and the "unbiased" standard deviation (σ_{n-1}, also labeled as " s ").
4. Order of Steps, Use of Parentheses and/or Memory Registers: Evaluate the following using your calculator only (do not write down any intermediate numbers):

$$
\frac{-(-3.52)+\sqrt{(-3.52)^{2}-(4)(7.5)(-1.98)}}{2(7.5)}
$$

5. Math Operations Practice: Solve for x :
a) $5^{x}=20$
b) $25 x=2.5^{6.7}$
c) $\mathrm{x}^{4}=4.67 \times 10^{-26}$
d) $\ln (\mathrm{x})=\log (853)$
e) $\mathrm{x}=\frac{4}{3} \pi\left(5.29 \times 10^{-11} \mathrm{~m}\right)^{3}$
f) $\sin (x)=0.7071$
g) $\mathrm{x}^{4.3}=105$
h) $12 x^{2}-9 x=16$

Answers

1. Normally, your calculator will prioritize certain operations over others, for instance, multiplication and division over addition and subtraction, $\mathrm{x}^{2}, 1 / \mathrm{x}, \log (\mathrm{x})$, etc, over multiplication and division. In other words, your calculator treats the calculation this way:
$2+(3 \times 2)+1-\left(3^{2}\right)+(2 / 3)=2 / 3=\mathbf{0 . 6 7}$ approximately. (If your calculator gives a different result, show me!)
2. $\quad \mathbf{1 . 0 4} \times \mathbf{1 0}^{\mathbf{1 5}}$. Use your $\mathbf{E X P}$ or $\mathbf{E E}$ key to enter numbers in scientific notation always. Also note that " $10.4 \times 10^{14 "}$ and "1.04 E15", although understandable, are not written in proper scientific notation. Proper notation is $n . x x x \ldots \times 10^{x}$ where n is an integer from 1 to 9 and x is any whole number.
3. Use the stat function on your calculator to obtain $\bar{x}=\mathbf{3 . 8}, \sigma_{\mathrm{n}-1}=\mathbf{0 . 2 5}$
4. $\quad \mathbf{0 . 8 0}$ (rounded to two significant figures)
5. a) Take the logarithm of both sides: $\log \left(5^{x}\right)=\log (20), x \log (5)=\log (20)$,
$\mathrm{x}=1.3010 / 0.69897=\mathbf{1 . 8 6}$
You can use either $\mathbf{l n}$ (natural, or base e, logarithm) or $\boldsymbol{\operatorname { l o g }}$ (common, or base ten logarithm) for this kind of problem.
b) $25 \mathrm{x}=463.65832, \mathrm{x}=19$ (rounded to two significant figures)
c) $\mathrm{x}=\sqrt[4]{\mathrm{V} 4.67 \times 10^{-26}}=4.65 \times 10^{-7}$
d) $\ln (\mathrm{x})=2.93095, \mathrm{x}=$ anti $\ln (2.93095)$ or $\mathrm{e}^{2.93095}=\mathbf{1 8 . 7}$
e) $6.20 \times 10^{-31} \mathrm{~m}^{3}$
f) $\mathrm{x}=\sin ^{-1}(0.7071)$ ("inverse sine" (not $\left.=1 / \sin \right)$, also called "arcsin" $)=\mathbf{4 5 . 0 0}$ degrees
g) Take the 4.3th root of both sides:
$\mathrm{x}={ }^{4.3} \mathrm{~V} 105=(105)^{1 / 4.3}=(105)^{0.23256}=\mathbf{2 . 9 5}$
h) This is a quadratic formula problem, which some calculators can solve simply by entering the values of a, b, and c . Otherwise, we must plug into the quadratic formula.

For the general equation $a^{2}+b x+c=0, \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Using $\mathrm{a}=12, \mathrm{~b}=-9$, and $\mathrm{c}=-16$, we obtain $\mathrm{x}_{+}=\mathbf{1 . 5 9}$ and $\mathrm{x}_{-}=\mathbf{- 0 . 8 4}$.

