

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:
$R=3.30 \mathrm{kN}, \quad \alpha=66.6^{\circ}$
$\mathbf{R}=3.30 \mathrm{kN}$ W $^{2} 66.6^{\circ}$

PROBLEM 2.2

The cable stays $A B$ and $A D$ help support pole $A C$. Knowing that the tension is 120 lb in $A B$ and 40 lb in $A D$, determine graphically the magnitude and direction of the resultant of the forces exerted by the stays at A using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

We measure:

$$
\begin{aligned}
& \alpha=51.3^{\circ} \\
& \beta=59.0^{\circ}
\end{aligned}
$$

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=139.1 \mathrm{lb}, \quad \gamma=67.0^{\circ}
$$

$$
R=139.1 \mathrm{lb} \square 67.0^{\circ}
$$

PROBLEM 2.5

A stake is being pulled out of the ground by means of two ropes as shown. Knowing that $\alpha=30^{\circ}$, determine by trigonometry (a) the magnitude of the force \mathbf{P} so that the resultant force exerted on the stake is vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\frac{120 \mathrm{~N}}{\sin 30^{\circ}}=\frac{P}{\sin 25^{\circ}}
$$

$P=101.4 \mathrm{~N}$
(b)

$$
\begin{array}{rlr}
30^{\circ}+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-30^{\circ} & \\
& =125^{\circ} \\
\frac{120 \mathrm{~N}}{\sin 30^{\circ}} & =\frac{R}{\sin 125^{\circ}} \quad R=196.6 \mathrm{~N}
\end{array}
$$

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
75^{\circ}+40^{\circ}+\beta & =180^{\circ} \\
\beta & =180^{\circ}-75^{\circ}-40^{\circ} \\
& =65^{\circ}
\end{aligned}
$$

$$
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{T_{1}}{\sin 65^{\circ}}
$$

$$
T_{1}=938 \mathrm{lb}
$$

(b)

$$
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{R}{\sin 40^{\circ}}
$$

$$
R=665 \mathrm{lb}
$$

PROBLEM 2.17

For the stake of Prob. 2.5, knowing that the tension in one rope is 120 N , determine by trigonometry the magnitude and direction of the force \mathbf{P} so that the resultant is a vertical force of 160 N .

PROBLEM 2.5 A stake is being pulled out of the ground by means of two ropes as shown. Knowing that $\alpha=30^{\circ}$, determine by trigonometry (a) the magnitude of the force \mathbf{P} so that the resultant force exerted on the stake is vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

Using the laws of cosines and sines:

$$
\begin{aligned}
P^{2} & =(120 \mathrm{~N})^{2}+(160 \mathrm{~N})^{2}-2(120 \mathrm{~N})(160 \mathrm{~N}) \cos 25^{\circ} \\
P & =72.096 \mathrm{~N}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\sin \alpha}{120 \mathrm{~N}} & =\frac{\sin 25^{\circ}}{72.096 \mathrm{~N}} \\
\sin \alpha & =0.70343 \\
\alpha & =44.703^{\circ}
\end{aligned}
$$

$$
\mathbf{P}=72.1 \mathrm{~N} \forall 44.7^{\circ}
$$

PROBLEM 2.20

Two forces \mathbf{P} and \mathbf{Q} are applied to the lid of a storage bin as shown. Knowing that $P=60 \mathrm{~N}$ and $Q=48 \mathrm{~N}$, determine by trigonometry the magnitude and direction of the resultant of the two forces.

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have

$$
\gamma=180^{\circ}-\left(20^{\circ}+10^{\circ}\right)
$$

$$
=150^{\circ}
$$

Then

$$
R^{2}=(60 \mathrm{~N})^{2}+(48 \mathrm{~N})^{2}
$$

$$
-2(60 \mathrm{~N})(48 \mathrm{~N}) \cos 150^{\circ}
$$

$$
R=104.366 \mathrm{~N}
$$

and

$$
\begin{aligned}
\frac{60 \mathrm{~N}}{\sin \alpha} & =\frac{104.366 \mathrm{~N}}{\sin 150^{\circ}} \\
\sin \alpha & =0.28745 \\
\alpha & =16.7054^{\circ}
\end{aligned}
$$

Hence:

$$
\begin{aligned}
\phi & =180^{\circ}-\alpha-180^{\circ} \\
& =180^{\circ}-16.7054^{\circ}-80^{\circ} \\
& =83.295^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=104.4 \mathrm{~N}>83.3^{\circ}
$$

