
CHAPTER    13 THE TRANSFER OF HEAT 
 

CONCEPTUAL QUESTIONS 
____________________________________________________________________________________________ 
 
1. REASONING AND SOLUTION   Convection is the process in which heat is carried from 

one place to another by the bulk movement of the medium. In liquids and gases, the 
molecules are free to move; hence, convection occurs as a result of bulk molecular motion.  
In solids, however, the molecules are generally bound to specific locations (lattice sites).  
While the molecules in a solid can vibrate about their equilibrium locations, they are not 
free to move from place to place within the solid. Therefore, convection does not generally 
occur in solids.   

____________________________________________________________________________________________ 
 
2. REASONING AND SOLUTION   A heavy drape, hung close to a cold window, reduces 

heat loss through the window by interfering with the process of convection. Without the 
drape, convection currents bring the warm air of the room into contact with the cold 
window. With the drape, convection currents are less prominent, and less room air is 
circulated directly past the cold surface of the window. 

____________________________________________________________________________________________ 
 
3. REASONING AND SOLUTION   Forced convection plays the principal role in the wind 

chill factor. The wind mixes the cold ambient air with the warm layer of air that 
immediately surrounds the exposed portions of your body. The forced convection removes 
heat from your exposed body surfaces, thereby making you feel colder than you would 
otherwise feel if there were no wind.     

____________________________________________________________________________________________ 
 
4. REASONING AND SOLUTION   A road surface is exposed to the air on its upper surface 

and to the earth on its lower surface. Even when the air temperature is at the freezing point, 
the road surface may be above this temperature as heat flows through the road from the 
earth.  In order for a road to freeze, sufficient heat must be lost from the earth by conduction 
through the road surface. The temperature of the earth under the road must be reduced at 
least to the freezing point. A bridge is exposed to the air on both its upper and lower 
surfaces. It will, therefore, lose heat from both surfaces and reach thermal equilibrium with 
the air much more quickly than an ordinary roadbed. It is reasonable, then, that the bridge 
surface will usually freeze before the road surface.   

____________________________________________________________________________________________ 
 
5.  SSM   REASONING AND SOLUTION   A piece of Styrofoam and a piece of wood are 

sandwiched together to form a layered slab. The two pieces have the same thickness and 
cross-sectional area. The exposed surfaces have constant temperatures. The temperature of 
the exposed Styrofoam surface is greater than the temperature of the exposed wood surface.  
The rate of heat flow through either layer can be determined from Equation 13.1: 
Q / t = kA∆T / L , where k is the thermal conductivity of the layer, A and L are the cross-
sectional area and thickness of the layer, respectively, and ∆T is the temperature difference 
between the ends of the layer. Since heat is not trapped within the sandwich, the rate at 
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which heat flows through the sandwich, Q/t, must be uniform throughout both layers.  
Therefore, (kA∆T / L)Styrofoam = (kA∆T / L)wood .  Since both layers have the same cross-
sectional area and thickness, A and L are the same for both layers. Therefore,  
kStyrofoam ∆T Styrofoam = kwood ∆T wood. From Table 13.1, we see that the thermal 
conductivity of Styrofoam is less than the thermal conductivity of wood; therefore, the 
temperature difference between the two ends of the wood layer must be smaller than the 
temperature difference between the two ends of the Styrofoam layer.  From this, we can 
conclude that the temperature at the Styrofoam-wood interface must be closer to the lower 
temperature of the exposed wood surface.   

____________________________________________________________________________________________ 
 
6. REASONING AND SOLUTION   When heat is transferred from place to place inside the 

human body by the flow of blood, the main method of heat transfer is forced convection, 
similar to that illustrated for the radiator fluid in Figure 13.7.  The heart is analogous to the 
water pump in the figure.   

____________________________________________________________________________________________ 
 
7. REASONING AND SOLUTION   Some animals have hair, the strands of which are hollow, 

air-filled tubes. Other animals have hair that is composed of solid, tubular strands. For 
animals that live in very cold climates, hair that is composed of hollow air-filled tubes 
would be advantageous for survival. Since air has a small thermal conductivity, hair shafts 
composed of hollow air-filled tubes would reduce the loss of body heat by conduction.  
Since hair shafts are small, no appreciable convection would occur within them. Thus, the 
hollow air-filled structure of the hair shaft inhibits the loss of heat by conduction. 

____________________________________________________________________________________________ 
 
8. REASONING AND SOLUTION   A poker used in a fireplace is held at one end, while the 

other end is in the fire.  Such pokers are made of iron rather than copper because the thermal 
conductivity of iron is roughly smaller by a factor of five than the thermal conductivity of 
copper. Therefore, the transfer of heat along the poker by conduction is considerably 
reduced by using iron. Hence, one end of the poker can be placed in the fire, and the other 
end will remain cool enough to be comfortably handled.   

____________________________________________________________________________________________ 
 
9. REASONING AND SOLUTION   Snow, with air trapped within it, is a thermal insulator, 

because air has a relatively low thermal conductivity and the small, dead-air spaces inhibit 
heat transfer by convection. Therefore, a lack of snow allows the ground to freeze at depths 
greater than normal. 

____________________________________________________________________________________________ 
 
10. REASONING AND SOLUTION   Table 13.1 indicates that the thermal conductivity of 

steel is 14 J/(s ⋅ m ⋅ C°) , while that of concrete is 1.1 J/(s ⋅ m ⋅ C°) . According to Equation 
13.1, Q , this implies that heat will flow more readily through a volume of steel 
than it will through an identically shaped volume of concrete. Therefore, while steel 
reinforcement bars can enhance the structural stability of concrete walls, they degrade the 
insulating value of the concrete. 

= kA∆Tt / L

____________________________________________________________________________________________ 
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11. REASONING AND SOLUTION   A potato will bake faster if a nail is driven into it before 

it is placed in the oven.   Since the nail is metal, we can assume that the thermal 
conductivity of the nail is greater than the thermal conductivity of the potato. The nail 
conducts more heat from the oven to the interior of the potato than does the flesh of the 
potato, thereby causing the potato to bake faster.   

____________________________________________________________________________________________ 
 
12. REASONING AND SOLUTION   Several days after a snowstorm, the roof on a house is 

uniformly covered with snow. On a neighboring house, the snow on the roof has completely 
melted.  Since one of the houses still has snow on the roof, it is reasonable to conclude that 
the ambient temperature is still below the freezing point of water. Since the snow has melted 
from the roof of the neighboring house, we can conclude that the heat required to melt the 
snow must have come through the attic and the roof by conduction. Hence, the house which 
has the uniform layer of snow on the roof is probably better insulated. The better the 
insulation, the smaller is the amount of heat conducted through the roof to melt the snow.     

____________________________________________________________________________________________ 
 
13.  SSM   REASONING AND SOLUTION   One car has a metal body, while another car has 

a plastic body.  On a cold winter day, these cars are parked side by side. The metal car feels 
colder to the touch of your bare hand even though both cars are at the same temperature. 
This is because your fingers are sensitive to the rate at which heat is transferred to or from 
them, rather than to the temperature itself. The metal car feels colder than the plastic car at 
the same temperature, because heat flows from your bare hand into the metal car more 
readily than it flows into the plastic car. The flow occurs into the metal more readily, 
because the thermal conductivity of the metal is greater than that of the plastic.   

____________________________________________________________________________________________ 
 
14. REASONING AND SOLUTION   Many high-quality pots have copper bases and polished 

stainless steel sides.  Since copper has a high thermal conductivity, heat can readily enter the 
bottom of the pot by means of conduction.  Since the temperature of the pot is greater than 
the temperature of its environment, the pot will lose heat by means of radiation. Polished 
stainless steel has a low emissivity; that is, it is a poor emitter of radiant energy. Hence, by 
making the sides of the pot polished stainless steel, the amount of heat that would be lost by 
radiation is minimized. This design is optimal. If the pot were constructed entirely of 
copper, the bottom would efficiently conduct heat into the pan; however, heat would also be 
conducted efficiently into the sides of the pot, raising their temperature and increasing the 
loss from the sides via radiation. If, on the other hand, the pot were constructed entirely of 
stainless steel, the loss of heat through radiant energy would be minimized; however, since 
stainless steel has a low thermal conductivity, heat would not efficiently enter the bottom of 
the pot through conduction.   

____________________________________________________________________________________________ 
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15. REASONING AND SOLUTION   The radiant energy Q emitted in a time t by an object 
that has a Kelvin temperature T, a surface area A, and an emissivity e, is given by Equation 
13.2,  Q e , where σ is the Stefan-Boltzmann constant.   T At= σ 4

  We now consider two objects that have the same size and shape. Object A has an 
emissivity of 0.3, and object B has an emissivity of 0.6.  Since each object radiates the same 
power, . The Stefan-Boltzmann constant is a universal constant, and 
since the objects have the same size and shape, 

e T A e T AA A
4

A B B
4

B σ σ=

A AA B= ;  therefore,  e T , or e TA A
4

B B
4=

T T e eA B B A/ /= =4 4 2 . Hence, the Kelvin temperature of A is 24  or 1.19 times the 
Kelvin temperature of B, not twice the temperature of B.   

____________________________________________________________________________________________ 
 
16.  SSM   REASONING AND SOLUTION 
 a.  The highly reflective paint reduces the ability of the so-called “radiator” to deliver heat 

into the room via the mechanism of radiation.  This is because the paint allows the surface 
of the device to reflect more radiation than it otherwise would.  Being a better reflector 
means that the device has become a poorer absorber of radiation, and poor absorbers are 
also poor emitters.  Since the painted “radiator” loses less heat by the mechanism of 
radiation, it becomes hotter than it would if it were unpainted. 

 
 b.  Since painting the device reduces its ability to radiate electromagnetic waves, we dismiss 

radiation as the primary mechanism by which “radiators” deliver heat.  We also dismiss 
conduction, since air is not a good conductor of heat.  That leaves convection.  “Radiators” 
indeed function primarily via convection.  The fact that the paint enables the device to 
become hotter for a given supply of hot water or steam is beneficial for convection.  The 
hotter the device becomes, the more effectively it can generate the convection currents that 
distribute the heat around the room. 

 
 
17. REASONING AND SOLUTION   Two strips of material,  A and B, are identical except 

that they have emissivities of 0.4 and 0.7, respectively. The strips are heated to the same 
temperature and have a bright glow. The emissivity is the ratio of the energy that an object 
actually radiates to the energy that the object would radiate if it were a perfect emitter. The 
strip with the higher emissivity will radiate more energy per second than the strip with the 
lower emissivity, other things being equal. Therefore, strip B will have the brighter glow.   

____________________________________________________________________________________________ 
 
18. REASONING AND SOLUTION   The thermal conductivity of the bottom of the pot is 

greater than the thermal conductivity of air; therefore, the portion of the heating element 
beneath the pot loses heat by conduction through the bottom of the pot. The exposed portion 
of the heating element loses some heat through convection, but the convective process is not 
as efficient as the conductive process through the bottom of the pot. The exposed portion of 
the heating element will, therefore, lose less heat and be at a higher temperature than the 
portion of the heating element beneath the pot. Thus, the exposed portion glows cherry red. 

____________________________________________________________________________________________ 
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19. REASONING AND SOLUTION   If we consider a glove and a mitten, each of the same 
"size" and made of the same material, we can deduce that the mitten has less surface area A 
exposed to the cold winter air. Thus, according to Equation 13.1, Q , we can 
conclude that the mitten will conduct less heat per unit time from the hand to the winter air.  
Therefore, to keep your hands as warm as possible during skiing, you should wear mittens 
as opposed to gloves.   

= kA∆Tt / L

____________________________________________________________________________________________ 
 
20. REASONING AND SOLUTION   Two identical hot cups of cocoa are sitting on a kitchen 

table.  One has a metal spoon in it and one does not. After five minutes, the cocoa with the 
metal spoon in it will be cooler. The metal spoon conducts heat from the cocoa to the handle 
of the spoon. Convection currents in the air and radiation then remove the heat from the 
spoon handle. The conduction-convection-radiation process removes heat from the cocoa, 
thereby cooling it faster than the cocoa that does not have a spoon in it.   

____________________________________________________________________________________________ 
 
21. REASONING AND SOLUTION   The radiant energy Q emitted in a time t by an object 

that has a Kelvin temperature T, a surface area A, and an emissivity e, is given by Equation 
13.2:  Q e , where σ is the Stefan-Boltzmann constant.   T At= σ 4

 
 a. A hot solid cube will cool more rapidly if it is cut in half, rather than if it is left intact.  

Since the cube is warmer than its environment, it will lose heat primarily through radiation.  
Convection currents will also remove some heat from the surface of the cube. When the 
cube has been cut in half, the surface area of the solid has been increased. If the length of 
one edge of the original cube is L, then cutting the cube in half increases the surface area 
from 6L2 to 8L2. From Equation 13.2, the amount of heat Q radiated in a time t is 
proportional to the surface area of the cube; therefore, the cube will radiate more rapidly and 
cool more rapidly if it is cut in half.   

 
 b. One pound of spaghetti noodles has a larger effective surface area than one pound of 

lasagna noodles. Imagine cutting many spaghetti noodles from one large lasagna noodle, in 
a way similar to what was done to the cube in part (a). Since the effective surface area of the 
spaghetti noodles is greater than that of the lasagna, heat will be radiated from the surface of 
the spaghetti noodles more effectively than heat will be radiated from the surface of the 
lasagna noodles. Therefore, the spaghetti noodles will cool more rapidly from the same 
initial temperature than the lasagna noodles.   

____________________________________________________________________________________________ 
 
22. REASONING AND SOLUTION   The black asphalt is a better absorber than the cement; 

the black asphalt will absorb more of the sun's radiant energy than the cement.  Since the 
sun has been shining all day, the asphalt will be at a higher temperature than the cement.  
The temperature of the asphalt is apparently above the freezing point of water, while the 
temperature of the cement playground is below the freezing point of water. Therefore, when 
snow hits the asphalt, it melts immediately, while the snow collects on the cement.   

____________________________________________________________________________________________ 
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23. REASONING AND SOLUTION   The radiant energy Q emitted in a time t by an object 
that has a Kelvin temperature T, a surface area A, and an emissivity e, is given by Equation 
13.2:  Q e , where σ is the Stefan-Boltzmann constant.   T At= σ 4

  If you are stranded in the mountains in bitter cold weather, you could minimize energy 
losses from your body by curling up into the tightest possible ball. In doing so, you 
minimize your effective surface area. Therefore, A in Equation 13.2 is made smaller, and 
you would radiate less heat.  

____________________________________________________________________________________________ 
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CHAPTER   13 THE TRANSFER OF HEAT 
 
PROBLEMS 
______________________________________________________________________________ 
 
1.  SSM   REASONING  The heat conducted through the iron poker is given by Equation 

13.1, . If we assume that the poker has a circular cross-section, then its 
cross-sectional area is . Table 13.1 gives the thermal conductivity of iron as 

.    

Q kA T t L= ( ) / ∆
A r= π 2

79 J / (s m C )⋅ ⋅ °
 
 SOLUTION   The amount of heat conducted from one end of the poker to the other in 5.0 s 

is, therefore,  

Q
k A T t

L
= =

° × ° °
=

⋅ ⋅( )∆ 79 J / s m C 5.0 10 m 502 C – 26 C 5.0 s

1.2 m
12 J

–3 2b g c h b gb gπ
 

______________________________________________________________________________ 
 
2.   REASONING AND SOLUTION   The rate at which energy is gained through the 

refrigerator walls is 
[ ]( )( )20.030 J/(s m C ) 5.3 m 25 C 5 C

42 J/s
0.075 m

Q kA T
t L

⋅ ⋅ ° ° − °∆
= = =  

 
 Therefore, the amount of heat per second that must be removed from the unit to keep it cool 

is 42 / s J .   
______________________________________________________________________________ 
 
3. REASONING  Since heat Q is conducted from the blood capillaries to the skin, we can use 

the relation ( )k A T t
Q

L
∆

=  (Equation 13.1) to describe how the conduction process depends 

on the various factors. We can determine the temperature difference between the capillaries 
and the skin by solving this equation for  ∆T and noting that the heat conducted per second 
is Q/t.  

 
 SOLUTION  Solving Equation 13.1 for the temperature difference, and using the fact that 

Q/t = 240 J/s, yields 

( ) ( )( )
( ) ( )

3

2

240 J/s 2.0 10 m/
1.5 C

0.20 J/ s m C 1.6 m

Q t L
T

k A

−×
∆ = = = °

⎡ ⎤⋅ ⋅ °⎣ ⎦
 

 
We have taken the thermal conductivity of body fat from Table 13.1. 

______________________________________________________________________________ 
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4. REASONING AND SOLUTION   The heat lost in each case is given by Q = (kA∆T)t/L. For 
the goose down jacket 

 [ ]( )
g 2

0.025 J/(s m C )
1.5 10 m

A T t
Q −

⋅ ⋅ ° ∆
=

×
 

 For the wool jacket 

      [ ]( )
w 3

0.040 J/(s m C )
5.0 10 m

A T t
Q −

⋅ ⋅ ° ∆
=

×
 

 Now 
 w g/ 4.Q Q = 8  

______________________________________________________________________________ 
 
5.  SSM   REASONING The heat transferred in a time t is given by Equation 13.1, 

Q k A T t= ( ) ∆ L/ . If the same amount of heat per second is conducted through the two 
plates, then ( ) .  Using Equation 13.1, this becomes ( )al st/ /Q t Q t=

 
al st

al st

k A T k A T
L L

∆ ∆
=  

 
 This expression can be solved for .    stL
 
 SOLUTION   Solving for  gives stL
 

3st
st al

al

14 J/(s m C ) (0.035 m) 2 0 10 m
240 J/(s m C )

k
L L

k
⋅ ⋅ °

= = ×
⋅ ⋅ °

–= .   

______________________________________________________________________________ 
 

6. REASONING  The heat Q conducted along the bar is given by the relation ( )k A T t
Q

L
∆

=  

(Equation 13.1). We can determine the temperature difference between the hot end of the 
bar and a point 0.15 m from that end by solving this equation for  ∆T and noting that the 
heat conducted per second is Q/t and that L = 0.15 m.  

 
 SOLUTION  Solving Equation 13.1 for the temperature difference, using the fact that  

Q/t = 3.6 J/s, and taking the thermal conductivity of brass from Table 13.1, yield 
 

( ) ( )( )
( ) ( )4 2

/ 3.6 J/s 0.15 m
19 C

110 J/ s m C 2.6 10  m

Q t L
T

k A −
∆ = = = °

⎡ ⎤⋅ ⋅ ° ×⎣ ⎦
 

 
 The temperature at a distance of 0.15 m from the hot end of the bar is 
 

306 C 19 C = 287 CT = ° −  ° °  
______________________________________________________________________________ 
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7.  SSM    WWW   REASONING AND SOLUTION   Values for the thermal conductivities 

of Styrofoam and air are given in Table 11.1.  The conductance of an 0.080 mm thick 
sample of Styrofoam of cross-sectional area A is 

 
[ ] 2s

3
s

0.010 J/(s m C )  
[125 J/(s m C )] 

0.080 10  m
k A A

A
L −

⋅ ⋅ °
= = ⋅

×
⋅ °  

 
 The conductance of a 3.5 mm thick sample of air of cross-sectional area A is 
 

[ ] 2a
3

a

0.0256 J/(s m C )  
[7.3 J/(s m C )] 

3.5 10  m
k A A

A
L −

⋅ ⋅ °
= =

×
⋅ ⋅ °  

 
 Dividing the conductance of Styrofoam by the conductance of air for samples of the same 

cross-sectional area A, gives 
 

2

2
[125 J/(s m C )] 17
 [7.3 J/(s m C )] 

A
A

⋅ ⋅ °
=

⋅ ⋅ °
 

 
 Therefore, the body can adjust the conductance of the tissues beneath the skin by 

a factor of 17 . 
______________________________________________________________________________ 
 
8. REASONING  To find the total heat conducted, we will apply Equation 13.1 to the steel 

portion and the iron portion of the rod.  In so doing, we use the area of a square for the cross 
section of the steel.  The area of the iron is the area of the circle minus the area of the 
square.  The radius of the circle is one half the length of the diagonal of the square. 

 
 SOLUTION  In preparation for applying Equation 13.1, we need the area of the steel and 

the area of the iron.  For the steel, the area is simply ASteel = L2, where L is the length of a 

side of the square.  For the iron, the area is AIron = π R2 – L2.  To find the radius R, we use 
the Pythagorean theorem, which indicates that the length D of the diagonal is related to the 
length of the sides according to D2 = L2 + L2.  Therefore, the radius of the circle is 
R D L= =/ 2 2 / 2 .  For the iron, then, the area is  

 
2

2 2 2
Iron

2 1
2 2

LA R L L ππ π
⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2L  

 
 Taking values for the thermal conductivities of steel and iron from Table 13.1 and applying 

Equation 13.1, we find 
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( ) ( ) ( )

( ) ( )

( )( )

Total Steel Iron

2 2
Steel Iron

Steel Iron

2 2

1
2

J J14 0.010 m 79 1 0.010 m
s m C s m C 2

78 C 18 C 120 s
85 J

0.50 m

Q Q Q

kA T t kA T t T t
k L k L

L L L
π

π

= +

∆ ∆ ∆⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞= + = + −⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⋅ ⋅ ° ⋅ ⋅ °⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

° − °
× =

 

______________________________________________________________________________ 
 
9. REASONING AND SOLUTION   Using Equation 13.1, Q kA T t L= ( ) / ∆ , we obtain 
 

  
Q
At

k T
L

F
HG
I
KJ =

∆      (1) 

 
 Before Equation (1) can be applied to the ice-aluminum combination, the temperature T at 

the interface must be determined.  We find the temperature at the interface by noting that the 
heat conducted through the ice must be equal to the heat conducted through the aluminum:  
Qice = Qaluminum.   Applying Equation 13.1 to this condition, we have 

 

ice aluminum

kA Tt kA Tt
L L
∆ ∆⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (2) 

 or 
 

[ ] [ ] [ ] [ ]2.2 J/(s m C ) ( 10.0 C)  T 240 J/(s m C ) ( 25.0 C)
0.0050 m 0.0015 m

A t A T⋅ ⋅ ° − ° − ⋅ ⋅ ° − − °
=

t
 

 
 The factors A and t can be eliminated algebraically.  Solving for T gives T = –24.959 °C for 

the temperature at the interface. 
 
 a.   Applying Equation (1) to the ice leads to 
 

[ ] 3 2

ice

[2.2 J/(s m C )] ( 10.0 C) ( 24.959 C)
6.58 10  J/(s m )

0.0050 m
Q
At

⋅ ⋅ ° − ° − − °⎛ ⎞ = =⎜ ⎟
⎝ ⎠

× ⋅  

 
 Since heat is not building up in the materials, the rate of heat transfer per unit area is the 

same throughout the ice-aluminum combination.  Thus, this must be the heat per second per 
square meter that is conducted through the ice-aluminum combination.  
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 b.  Applying Equation (1) to the aluminum in the absence of any ice gives: 
 

 [ ] 6 2

Al

[240 J/(s m C )] ( 10.0 C) ( 25.0 C)
2.40 10  J/(s m )

0.0015 m
Q
At

⋅ ⋅ ° − ° − − °⎛ ⎞ = =⎜ ⎟
⎝ ⎠

× ⋅  

______________________________________________________________________________ 
 
10. REASONING  The water in both pots is boiling away at the same rate.  This means that the 

heat per second Q
t

 being delivered to the water through the bottom of the pot is the same in 

each case.  The heat passes through the bottom of either pot via conduction.  Therefore, we 

know that Equation 13.1 applies, so that Q k A T
t L

∆
= , where k is the thermal conductivity of 

the material from which the pot bottom is made, A is the cross-sectional area of the bottom, 
∆T is the difference in temperature between the inner and outer surface of the pot bottom, 
and L is the thickness of the bottom.  We will apply this relation to the aluminum and to the 
copper bottom. 

 
 SOLUTION  Applying Equation 13.1, we obtain 
 

( ) ( )copper copper aluminum aluminum

copper aluminum
     or        

k A T k A TQ Q
t t L L

∆ ∆⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 Note that the area A and thickness L are the same for each pot.  Algebraically eliminating 

these terms gives 
 

( ) ( )copper aluminumcopper aluminumk T k T∆ = ∆  

 
 Solving for ( )copperT∆ , we find that 

( )
( )aluminum aluminum

heating element watercopper
copper

k T
T T T

k
∆

∆ = − =  

 
 Thus, the heating element on which the copper bottom rests has a temperature of 
 

( )

( ) ( )
( )

aluminum aluminum
heating element water

copper

240 J/ s m C 155.0 C 100.0 C
100.0 C 134 C

390 J/ s m C

k T
T T

k
∆

= +

⎡ ⎤⋅ ⋅ ° ° − °⎣ ⎦= ° + = °
⋅ ⋅ °
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11.  SSM   REASONING  The heat lost per second due to conduction through the glass is given 
by Equation 13.1 as Q/t = (kA∆T)/L.  In this expression, we have no information for the 
thermal conductivity k, the cross-sectional area A, or the length L.  Nevertheless, we can 
apply the equation to the initial situation and again to the situation where the outside 
temperature has fallen.  This will allow us to eliminate the unknown variables from the 
calculation. 

 
 SOLUTION  Applying Equation 13.1 to the initial situation and to the situation after the 

outside temperature has fallen, we obtain 
 

( ) ( )In Out, initial In Out, colder

Initial Colder
     and     

kA T T kA T TQ Q
t L t L

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 Dividing these two equations to eliminate the common variables gives 
 

( )
( )

( )

( )

In Out, colder
In Out, colderColder

In Out, initialInitial In Out, initial

/
/

kA T T
T TQ t L

Q t T TkA T T

L

−
−

= =
−−

 

 
 Remembering that twice as much heat is lost per second when the outside is colder, we find 
 

( )
( )

In Out, colderInitial

In Out, initialInitial

2 /
2

/
T TQ t

Q t T T
−

= =
−

 

 
 Solving for the colder outside temperature gives 
 

( ) ( )Out, colder Out, initial In2 2 5.0 C 25 C 15 CT T T= − = ° − ° = − °  
____________________________________________________________________________________________ 
 
12. REASONING  Heat Q flows along the length L of the bar via conduction, so that 

Equation 13.1 applies:  ( )k A T t
Q

L
∆

= , where k is the thermal conductivity of the material 

from which the bar is made, A is the cross-sectional area of the bar, ∆T is the difference in 
temperature between the ends of the bar, and t is the time during which the heat flows.  We 
will apply this expression twice in determining the length of the bar. 

 
 SOLUTION  Solving Equation 13.1 for the length L of the bar gives 
 

( ) ( )W Ck A T T tk A T t
L

Q Q
−∆

= =                                                  (1) 
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 where TW and TC, respectively are the temperatures at the warmer and cooler ends of the 
bar.  In this result, we do not know the terms k, A, t, or Q.  However, we can evaluate the 
heat Q by recognizing that it flows through the entire length of the bar.  This means that we 
can also apply Equation 13.1 to the 0.13 m of the bar at its cooler end and thereby obtain an 
expression for Q: 

( )Ck A T T t
Q

D
−

=  
 
 where the length of the bar through which the heat flows is D = 0.13 m and the temperature 

at the 0.13-m point is T = 23 °C, so that CT T T∆ = − .  Substituting this result into 
Equation (1) and noting that the terms k, A, and t can be eliminated algebraically, we find 

 
( ) ( )

( )
( )

( )

( )
( )

( )( )

W C W C W C

C C

W C

C

48 C 11 C 0.13 m
0.40 m

23 C 11 C

k A T T t k A T T t k A T T t D
L

Q k A T T t k A T T t
D

T T D
T T

− − −
= = =

− −

− ° − °
= = =

° − °−

 

 
 
13.  REASONING  The heat Q required to change liquid water at 100.0 °C into steam at  

100.0 °C is given by the relation Q = mLv (Equation 12.5), where m is the mass of the water 
and Lv is the latent heat of vaporization. The heat required to vaporize the water is 
conducted through the bottom of the pot and the stainless steel plate. The amount of heat 

conducted in a time t is given by ( )k A T t
Q

L
∆

=  (Equation 13.1), where k is the thermal 

conductivity, A and L are the cross-sectional area and length, and ∆T is the temperature 
difference. We will use these two relations to find the temperatures at the aluminum-steel 
interface and at the steel surface in contact with the heating element. 

 
 SOLUTION   

a .  Substituting Equation 12.5 into Equation 13.1 and solving for ∆T, we have 

( )vmL LQLT
k At k At

∆ = =  

 
The thermal conductivity kAl of aluminum can be found in Table 13.1, and the latent heat of 
vaporization for water can be found in Table 12.3. The temperature difference ∆TAl between 
he aluminum surfaces is t 

( ) ( )( )( )
( ) ( )( )

5 3
v

Al 2
Al

0.15 kg 22.6 10  J/kg 3.1 10 m
1.2 C

240 J/ s m C 0.015 m 240 s

mL L
T

k At

−× ×
∆ = = =

⎡ ⎤⋅ ⋅ °⎣ ⎦
°  
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The temperature at the aluminum-steel interface is TAl-Steel = 100.0 °C + ∆TAl = 101.2 C° . 
 

b. Using the thermal conductivity kss of stainless steel from Table 13.1, we find that the 
temperature difference ∆Tss between the stainless steel surfaces is 
 

( ) ( )( )( )
( ) ( )( )

5 3
v

ss 2
ss

0.15 kg 22.6 10  J/kg 1.4 10 m
9.4 C

14 J/ s m C 0.015 m 240 s

mL L
T

k At

−× ×
∆ = = =

⎡ ⎤⋅ ⋅ °⎣ ⎦
°  

 
The temperature at the steel-burner interface is T = 101.2 °C + ∆Tss = 110.6 C° . 

______________________________________________________________________________ 
 
14. REASONING  Heat flows along the rods via conduction, so that Equation 13.1 applies:  

( )k A T t
Q

L
∆

= , where Q is the amount of heat that flows in a time t, k is the thermal 

conductivity of the material from which a rod is made, A is the cross-sectional area of the 
rod, and ∆T is the difference in temperature between the ends of a rod.  In arrangement a, 
this expression applies to each rod and ∆T has the same value of WT T TC∆ = − .  The total 
heat  is the sum of the heats through each rod.  In arrangement b, the situation is more 
complicated.  We will use the fact that the same heat flows through each rod to determine 
the temperature at the interface between the rods and then use this temperature to determine 
∆T and the heat flow through either rod. 

Q′

 
 SOLUTION  For arrangement a, we apply Equation 13.1 to each rod and obtain for the total 

heat that 
( ) ( ) ( ) ( )1 W C 2 W C 1 2 W C

1 2
k A T T t k A T T t k k A T T t

Q Q Q
L L L

− − +
′ = + = + =

−
             (1) 

 
 For arrangement b, we use T to denote the temperature at the interface between the rods and 

note that the same heat flows through each rod.  Thus, using Equation 13.1 to express the 
heat flowing in each rod, we have 

 
( ) ( ) ( ) (1 W 2 C

1 W 2 C

Heat flowing Heat flowing
through rod 1 through rod 2

     or     
k A T T t k A T T t

k T T k T T
L L

− −
= − )= −  

 
 Solving this expression for the temperature T gives 
 

1 W 2 C

1 2

k T k T
T

k k
+

=
+

                                                             (2) 

 
 Applying Equation 13.1 to either rod in arrangement b and using Equation (2) for the 

interface temperature, we can determine the heat Q that is flowing.  Choosing rod 2, we find 
that 
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( )

( )
( )

1 W 2 C
2 C

2 C 1 2

1 W 1 C
2

2 1 W C1 2

1 2
                                    (3)

k T k T
k A T t

k A T T t k k
Q

L L

k T k T
k A t

k Ak T T tk k
L L k k

⎛ ⎞+
−⎜ ⎟⎜ ⎟− +⎝ ⎠= =

⎛ ⎞−
⎜ ⎟⎜ ⎟ −+⎝ ⎠= =

+

 

 
  Using Equations (1) and (3), we obtain for the desired ratio that 

( ) ( )

( )
( )

( ) ( )1 2 W C
1 2 W C

2 1 W C

1 2

k k A T T t
k k A T TQ L

Q k Ak T T t
L k k

+ −
+ −′

= =
−

+

( )
( )

1 2

2 1 W C

t L k k

L k A k T T

+

−

( )2
1 2

2 1

k k
k kt

+
=  

 
 Using the fact that , we obtain 2 2k = 1k

 

( ) ( )2 2
1 2 1 1

2 1 1 1

2
4.5

2
k k k kQ

Q k k k k
+ +′

= = =  

 
 
15.  SSM    WWW   REASONING  If the cylindrical rod were made of solid copper, the 

amount of heat it would conduct in a time t is, according to Equation 13.1, 
. Similarly, the amount of heat conducted by the lead-copper 

combination is the sum of the heat conducted through the copper portion of the rod and the 
eat conducted through the lead portion: 

 copper copper 2(Q k A T= ∆ / )L t

 

h 
)combination copper 2 1 lead 1( / /Q k A A T L k A T L t⎡ ⎤= − ∆ + ∆⎣ ⎦ . 

 
 Since the lead-copper combination conducts one-half the amount of heat than does the solid 

copper rod, 1
combination copper2Q Q= ,  or  

 
)  copper 2 1 copper 2lead 1

( 1
2

k A A T k A Tk A T
L L L

− ∆ ∆⎛ ⎞∆
+ = ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 This expression can be solved for , the ratio of the cross-sectional areas.  Since the 

cross-sectional area of a cylinder is circular,
1 /A A2

2A rπ= .  Thus, once the ratio of the areas is 
known, the ratio of the radii can be determined.   

 
 OLUTION   Solving for the ratio of the areas, we have S 

( )
copper1

2 copper lead2

kA
A k k

=
−
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 The cross-sectional areas are circular so that ;  therefore,  2 2

1 2 1 2 1 2/ ( ) /( ) ( /A A r r r rπ π= = 2)
 

 copper1

2 copper lead

390 J/(s m C ) 0.74
2( ) 2[390 J/(s m C ) 35 J/(s m C )]

kr
r k k

⋅ ⋅ °
= =

− ⋅ ⋅ ° − ⋅ ⋅ °
=  

 
 where we have taken the thermal conductivities of copper and lead from Table 13.1. 
____________________________________________________________________________________________ 
 
16. REASONING  The radiant energy Q absorbed by the person’s head is given by 

 (Equation 13.2), where e is the emissivity, σ is the Stefan-Boltzmann 
constant, T is the Kelvin temperature of the environment surrounding the person (T = 28 °C 
+ 273 = 301 K), A is the area of the head that is absorbing the energy, and t is the time. The 
radiant energy absorbed per second is Q/t =  

4Q e T Atσ=

4 .e T Aσ
 
 SOLUTION   

a.  The radiant energy absorbed per second by the person’s head when it is covered with 
air (e = 0.85) is h 

( ) ( ) ( ) ( )44 8 2 4 4 20.85 5.67 10  J/ s m K 301 K 160 10  m 6.3 J/sQ e T A
t

σ − −⎡ ⎤= = × ⋅ ⋅ × =⎣ ⎦  

 
b .  The radiant energy absorbed per second by a bald person’s head (e = 0.65)  is 

( ) ( ) ( ) ( )44 8 2 4 4 20.65 5.67 10  J/ s m K 301 K 160 10  m 4.8 J/sQ e T A
t

σ − −⎡ ⎤= = × ⋅ ⋅ × =⎣ ⎦  

______________________________________________________________________________ 
 
17.  SSM    WWW   REASONING AND SOLUTION  Solving the Stefan-Boltzmann law, 

Equation 13.2, for the time t,  and using the fact that blackbod bulbyQ Q= , we have 
 

blackbody bulb bulb bulb
blackbody 4 4 4

 Q Q P t
t

T A T A T Aσ σ σ
= = =  

 
 where bulbP  is the power rating of the light bulb.  Therefore, 

 

blackbody –8 2 4 4 2
(100.0 J/s) (3600 s)  

5.67 10  J/(s m K )  (303 K)  (6 sides)(0.0100 m) / side

1 h 1 d                                  = 14.5 d
3600 s 24 h

t =
⎡ ⎤ ⎡× ⋅ ⋅⎣ ⎦ ⎣

⎛ ⎞⎛ ⎞×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎤
⎦

  

______________________________________________________________________________ 
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18. REASONING  According to the Stefan-Boltzmann law, the radiant power emitted by the 

“radiator” is 4Q e T A
t

σ=  (Equation 13.2), where Q is the energy radiated in a time t, e is 

the emissivity of the surface, σ is the Stefan-Boltzmann constant, T is the temperature in 
Kelvins, and A is the area of the surface from which the radiant energy is emitted.  We will 
apply this law to the “radiator” before and after it is painted.  In either case, the same radiant 
power is emitted. 

 
SOLUTION  Applying the Stefan-Boltzmann law, we obtain the following:   

4 4
after after before before

after before
     and     Q Qe T A e T

t t
σ σ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A  

 
  Since the same radiant power is emitted before and after the “radiator” is painted, we have 

4 4
after after before before

after before
     or     Q Q e T A e T

t t
σ σ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A  

 
  The terms σ and A can be eliminated algebraically, so this result becomes 

4 4 4
after after before before after after before before     or     e T A e T A e T e Tσ σ= = 4  

 
 Remembering that the temperature in the Stefan-Boltzmann law must be expressed in 

Kelvins, so that Tbefore = 62 °C +273 = 335 K (see Section 12.2), we find that 
 

( ) ( )
4

4 before before before 44after after before
after after

0.75     or     335 K 371 K
0.50

e T e
T T T

e e
= = = =  

 
 On the Celsius scale, this temperature is 371 K − 273 =  98 °C  . 
 
 
19. REASONING AND SOLUTION   We know from Equation 13.2 that 
 

1
5 2

4 –8 2 4 4
/ 6.0 10  W 2.6 10  m

(0.36) 5.67 10  J/(s m K ) (3273 K)
Q tA

e Tσ
−×

= = = ×
⎡ ⎤× ⋅ ⋅⎣ ⎦

 

______________________________________________________________________________ 
 
20. REASONING  The radiant energy Q radiated by the sun is given by  

(Equation 13.2), where e is the emissivity, σ is the Stefan-Boltzmann constant, T is its 
temperature (in Kelvins), A is the surface area of the sun, and t is the time. The radiant 
energy emitted per second is Q/t =  Solving this equation for T gives the surface 
temperature of the sun. 

4Q e T Atσ=

4 .e T Aσ
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 SOLUTION  The radiant power produced by the sun is Q/t = 3.9 × 1026 W. The surface 
area of a sphere of radius r is A = 4πr2. Since the sun is a perfect blackbody, e = 1. Solving 
Equation 13.2 for the surface temperature of the sun gives 

 

( ) ( ) ( )
26

4 42 28 2 4 8

/ 3.9 10  W 5800 K
4 1 5.67 10  J/ s m K 4 6.96 10  m

Q tT
e rσ π π−

×
= = =

⎡ ⎤× ⋅ ⋅ ×⎣ ⎦

 

______________________________________________________________________________ 
 
21.  SSM   REASONING AND SOLUTION  The net power generated by the stove is given by 

Equation 13.3, .  Solving for T gives P e A T Tnet = −σ ( 4
0
4 )

 

T
P

e A
T= +

F
HG

I
KJ

=
× ⋅ ⋅

+
RST

UVW =

net

–8 2 4 2
4

1/4
7300 W

(0.900)[5.67 10  J / (s m K )](2.00 m )
(302 K) 532 K

σ 0
4

1 4/

 

______________________________________________________________________________ 
 
22. REASONING  The net rate at which energy is being lost via radiation can not exceed the 

production rate of 115 J/s, if the body temperature is to remain constant.  The net rate at 
which an object at temperature T radiates energy in a room where the temperature is T0 is 

given by Equation 13.3 as Pnet = eσA(T4 – T0
4).  Pnet is the net energy per second radiated.  

We need only set Pnet equal to 115 J/s and solve for T0.  We note that the temperatures in 
this equation must be expressed in Kelvins, not degrees Celsius. 

 
 SOLUTION  According to Equation 13.3, we have 
 

( )4 4 4 4 net
net 0 0     or     

P
P e A T T T T

e A
σ

σ
= − = −  

 
 Using Equation 12.1 to convert from degrees Celsius to Kelvins, we have 
 T = 34 + 273 = 307 K.  Using this value, it follows that  
 

( )
( ) ( )

4 net4
0

4
4 8 2 4 2

115 J/s307 K 287 K (14 C)
0.700 5.67 10  J/ s m K 1.40 m

P
T T

e Aσ

−

= −

= − =
⎡ ⎤× ⋅ ⋅⎣ ⎦

°

 

____________________________________________________________________________________________ 
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23. REASONING AND SOLUTION   The heat Q conducted during a time t through a wall of 
thickness L and cross sectional area A is given by Equation 13.1: 

 

 
kA T tQ

L
∆

=  

 
 The radiant energy Q, emitted in a time t by a wall that has a Kelvin temperature T, surface 

area A, and emissivity e is given by Equation (13.2): 
 

  4Q e T Atσ=
 
 If the amount of radiant energy emitted per second per square meter at 0 °C is the same as 

the heat lost per second per square meter due to conduction, then 
 

 
conduction radiation

Q Q
t A t A

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
 Making use of Equations 13.1 and 13.2, the equation above becomes 
 

 4k T e T
L

σ∆
=  

 
 Solving for the emissivity e gives: 
 

 4 8 2 4
[1.1 J/(s m K)](293.0 K  273.0 K) = 0.70

(0.10 m)[5.67 10  J/(s m K )] (273.0 K)
k Te

L Tσ −
∆ ⋅ ⋅ −

= =
× ⋅ ⋅ 4

)

 

 
 Remark on units:  Notice that the units for the thermal conductivity were expressed as 

J/(s.m.K) even though they are given in Table 13.1 as J/(s.m.C°). The two units are 
equivalent since the "size" of a Celsius degree is the same as the "size" of a Kelvin; that is,  
1 C° = 1 K.   Kelvins were used, rather than Celsius degrees, to ensure consistency of units.  
However, Kelvins must be used in Equation 13.2 or any equation that is derived from it. 

______________________________________________________________________________ 
 
24. REASONING   The heat Q necessary to vaporize a mass m of any substance at its boiling 

point is  where Lv is the latent heat of vaporization.  Therefore, the mass vaporized 
by an amount of heat Q is .   

vQ mL=

v/m Q L=
 
 For the liquid helium system in question, it continually absorbs heat through radiation.  The 

net power absorbed is given by Equation 13.3,  where T0 is the 
temperature of the liquid helium, and T is the temperature maintained by the shield.  Since 
the container is a perfect blackbody radiator, e

4 4
net 0(P e A T Tσ= −

= 1.  Thus, the rate at which the mass of 
liquid helium boils away through the venting value is    
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4 4

net 0

v v v

( )( / ) P e A T Tm Q t
t L L L

σ −
= = =  

 
 This expression can be multiplied by the time t to determine the mass vaporized during that 

time.   
 
 SOLUTION   The rate at which liquid helium mass boils away is  
 

 
–8 2 4 2 4 4

4
4

(1)[5.67 10  J/(s m K )]4 (0.30 m) [(77 K) (4.2 K) ] 1.07 10  kg/s
2.1 10  J/kg

m
t

π −× ⋅ ⋅ −
= =

×
×  

 
 The mass of liquid helium that boils away in one hour is, therefore,  
 

 4 kg 3600 s1.07 10   (1.0 h) 0.39 kg
s 1.0 h

−⎛ ⎞ ⎛ ⎞× =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

______________________________________________________________________________ 
 
25.  SSM   REASONING  The total radiant power emitted by an object that has a Kelvin 

temperature T, surface area A, and emissivity e can be found by rearranging Equation 13.2, 
the Stefan-Boltzmann law: . The emitted power is .  
Therefore, when the original cylinder is cut perpendicular to its axis into N smaller 
cylinders, the ratio of the power radiated by the pieces to that radiated by the original 
cylinder is 

4Q e T Atσ= 4/P Q t e T Aσ= =

    
4

pieces 2
4

original 1

P e T A
P e T A

σ
σ

=             (1) 

 
 where  is the surface area of the original cylinder, and  is the sum of the surface areas 

of all N smaller cylinders.  The surface area of the original cylinder is the sum of the surface 
area of the ends and the surface area of the cylinder body; therefore, if L  and r represent the 
length  and cross-sectional radius of the original cylinder, with 

1A 2A

L r= 10 ,   
 

1

2 2

(area of ends) (area of cylinder body)

    2( ) (2 ) 2( ) (2 )(10 ) 22

A

r r L r r r 2rπ π π π

= +

= + = + = π

 

 
 When the original cylinder is cut perpendicular to its axis into N smaller cylinders, the total 

surface area  is  2A
 

( )2 2
2 2( ) (2 ) 2( ) (2 )(10 ) 2 20A N r r L N r r r N 2rπ π π π= + = + = + π  

 
 Substituting the expressions for  and  into Equation (1), we obtain the following 

expression for the ratio of the power radiated by the N pieces to that radiated by the original 
cylinder 

1A 2A
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( )4 2
pieces 2

4 2
original 1

2 20 10
1122

P e T A N r N
P e T A r

σ π
σ π

+ +
= = =  

 
 SOLUTION   Since the total radiant power emitted by the N pieces is twice that emitted by 

the original cylinder, pieces original/P P 2= , we have (N + 10)/11 = 2. Solving this expression 

for N gives N = 12 .  Therefore, there are 12 smaller cylinders . 
______________________________________________________________________________ 
 
26. REASONING  The drawing shows a cross-

sectional view of the small sphere inside the larger 
spherical asbestos shell. The small sphere produces 
a net radiant energy, because its temperature 
(800.0 °C) is greater than that of its environment 
(600.0 °C). This energy is then conducted through 
the thin asbestos shell (thickness = L). By setting 
the net radiant energy produced by the small 
sphere equal to the energy conducted through the 
asbestos shell, we will be able to obtain the 
temperature T2 of the outer surface of the shell. 

600.0 °C 

T2

r1
r2 

800.0 °C 

L 

 
 SOLUTION  The heat Q conducted  during a time through the thin asbestos shell is given 

by Equation 13.1 as 
( )asbestos 2k A T

Q
L

∆
=

t
, where kasbestos is the thermal conductivity of 

asbestos (see Table 13.1), A2 is the area of the spherical shell ( )2
2 2A rπ= , ∆T is the 

temperature difference between the inner and outer surfaces of the shell  
(∆T = 600.0 °C − T2), and L is the thickness of the shell. Solving this equation for the T2 
yields 

 

( )2 2
asbestos 2

600.0 CQ LT
k r tπ

= + °

)

 

 
 The heat Q is produced by the net radiant energy generated by the small sphere inside the 

asbestos shell. According to Equation 13.3, the net radiant energy is 
, where e is the emissivity, σ is the Stefan-Boltzmann constant, 

A

( 4 4
net 1 0Q P t e A T T tσ= = −

1 is the spherical area of the sphere ( )2
1 1A rπ= , T is the temperature of the sphere  

(T = 800.0 °C = 1073.2 K) and T0 is the temperature of the environment that surrounds the 
sphere (T0 = 600.0 °C = 873.2 K). Substituting this expression for Q into the expression 
above for T2, and algebraically eliminating the time t and the factors of π, gives 
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( )

( ) ( ) ( ) ( )
( )

4 4
0

2 2
2

asbestos
1

4 48 2
2 4

2

600.0 C  

J0.90 5.67 10 1073.2 K  873.2 K 1.00 10 m
s m K600.0 C  

J0.090 10
s m C

557.7 C

e T T L
T

r
k

r

σ

− −

⎡ ⎤−⎣ ⎦= ° −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞ ⎡ ⎤× −⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦⋅ ⋅⎝ ⎠⎩ ⎭= ° −
⎡ ⎤
⎢ ⎥⋅ ⋅ °⎣ ⎦

= °

×

______________________________________________________________________________ 
 
27.  SSM   REASONING AND SOLUTION  According to Equation 13.1, the heat per second 

lost is 
 

Q
t

=
k A ∆T

L
=

[0.040 J/(s ⋅m ⋅ Co )] (1.6 m 2 )(25 Co )
2.0 ×10 –3 m

= 8.0 ×102 J/s  

 
 where the value for the thermal conductivity k of wool has been taken from Table 13.1. 
______________________________________________________________________________ 
 
28. REASONING AND SOLUTION    
 a.   The heat lost by the oven is  

 

Q
kA T t

L
= =

⋅ ⋅ ° ° − °
F
HG

I
KJ

= ×

( )
.

.

∆
0 160 6 0

3600

8 6 106

.045 J / (s m C ) 1.6 m C 50 C h
s

1 h
0.020 m

J

2c hb gb g

 

 
 b.   As indicated on the page facing the inside of the front cover, 3.600 × 106 J = 1 kWh, so 

that 1 J = 2.78 × 10–7 kWh.  Therefore, Q = 2.4 kWh.  At $ 0.10 per kWh, the cost is 
$ 0.24 . 

______________________________________________________________________________ 
 
29. REASONING  According to the discussion in Section 13.3, the net power Pnet radiated by 

the person is , where e is the emissivity, σ is the Stefan-Boltzmann 

constant, A is the surface area, and T and T
( 4 4

net 0P e A T Tσ= − )
0 are the temperatures of the person and the 

environment, respectively. Since power is the change in energy per unit time (see 
Equation 6.10b), the time t required for the person to emit the energy Q contained in the 
dessert is t = Q/Pnet. 
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 SOLUTION  The time required to emit the energy from the dessert is 
 

( )4 4
net 0

Q Qt
P e A T Tσ

= =
−

 

  

 The energy is ( ) 4186 J260 Calories
1 Calorie

Q ⎛= ⎜
⎝ ⎠

⎞
⎟ , and the Kelvin temperatures are  

T = 36 °C + 273 = 309 K and T0 = 21 °C + 273 = 294 K. The time is 
 

( )

( ) ( ) ( ) ( ) ( )
4

4 48 2 4 2

4186 J260 Calories
1 Calorie 1.2 10  s

0.75 5.67 10  J/ s m K 1.3 m 309 K  K
t

−

⎛ ⎞
⎜ ⎟
⎝ ⎠= =

⎡ ⎤⎡ ⎤× ⋅ ⋅ − 294⎢ ⎥⎣ ⎦ ⎣ ⎦

×  

______________________________________________________________________________ 
 
30.  REASONING AND SOLUTION    
 a.   The radiant power lost by the body is 
 

 PL = eσ T 4A = (0.80)[5.67 × 10–8 J/(s⋅m2⋅K4)](307 K)4(1.5 m2) = 604 W 
 
 The radiant power gained by the body from the room is 
 

 Pg = (0.80)[5.67 × 10–8 J/(s⋅m2⋅K4)](298 K)4(1.5 m2) = 537 W 
 
 The net loss of radiant power is P =  PL − Pg  =  67 W  
 
 b.   The net energy lost by the body is 
 

 1 Calorie(67 W)(3600 s) 58 Calories
4186 J

Q Pt
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

______________________________________________________________________________ 
 
31.  SSM   REASONING AND SOLUTION  The power radiated per square meter by the car 

when it has reached a temperature T is given by the Stefan-Boltzmann law, Equation 13.2, 
, where 4

radiated /P A eσ= T Q tradiated /P = .  Solving for T we have 
 

1/4
1/ 4 2

radiated
–8 2 4

( / ) 560 W/m 320 K
(1.00) 5.67 10  J/(s m K )

P A
T

eσ

⎧ ⎫⎡ ⎤ ⎪ ⎪= = =⎨ ⎬⎢ ⎥ ⎡ ⎤× ⋅ ⋅⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭
 

______________________________________________________________________________ 
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32. REASONING AND SOLUTION According to Equation 13.2, for the sphere we have  
Q/t = eσAsTs

4, and for the cube Q/t = eσAcTc
4.  Equating and solving we get 

 
 Tc

4 = (As/Ac)Ts
4 

 Now                 
 As/Ac = (4π R2)/(6L2) 

 

 The volume of the sphere and the cube are the same, (4/3) π R3 = L3, so 
1/33

4
R L

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 

 The ratio of the areas is 
2 / 32

s
2

c

4 4 3 0.806
6 46

A R
A L

π π
π

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
.  The temperature of the cube is, 

then  

( ) ( )
1/4

1/ 4s
c s

c
0.806 773 K 732 K

A
T T

A
⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

______________________________________________________________________________ 
 
33. REASONING  The heat Q required to melt ice at 0 °C into water at 0 °C is given by the 

relation Q = mLf (Equation 12.5), where m is the mass of the ice and Lf is the latent heat of 
fusion. We divide both sides of this equation by the time t and solve for the mass of ice per 
second (m/t) that melts: 

f

Q
m t
t L

⎛ ⎞
⎜ ⎟
⎝ ⎠=  

(1
) 

  
The heat needed to melt the ice is conducted through the copper bar, from the hot end to the 

cool end. The amount of heat conducted in a time t is given by ( )k A T t
Q

L
∆

=  (Equation 

13.1), where k is the thermal conductivity of the bar, A and L are its cross-sectional area and 
length, and ∆T is the temperature difference between the ends. We will use these two 
relations to find the mass of ice per second that melts. 

 
 SOLUTION  Solving Equation 13.1 for Q/t and substituting the result into Equation (1) 

gives 

f f

k A T
m kL
t L L L

A T
∆

∆
= =  

 
The thermal conductivity of copper can be found in Table 13.1, and the latent heat of fusion 
for water can be found in Table 12.3. The temperature difference between the ends of the 
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rod is ∆T = 100 C°, since the hot end is in boiling water (100 °C) and the cool end is in ice 
(0 °C). Thus, 
 

( ) ( )( )
( )( )

4 2
5

4
f

390 J/ s m C 4.0 10 m 100 C
3.1 10  kg/s

1.5 m 33.5 10  J/kg
m k A T
t L L

−
−

⎡ ⎤⋅ ⋅ ° × °∆ ⎣ ⎦= = = ×
×

 

______________________________________________________________________________ 
 
34. REASONING AND SOLUTION   The rate of heat transfer is the same for all three materials 

so 
Q/t  =  kpA∆Tp/L  =  kbA∆Tb/L  =  kwA∆Tw/L 

 
 Let Ti be the inside temperature, T1 be the temperature at the plasterboard-brick interface, T2 

be the temperature at the brick-wood interface, and To be the outside temperature.  Then 
 

     kpTi − kpT1 = kbT1 − kbT2      (1) 
 and 

     kbT1 − kbT2 = kwT2 − kwTo      (2) 
 
 Solving (1) for T2 gives 

 T2 = (kp + kb)T1/kb − (kp/kb)Ti 
 
 a.   Substituting this into (2) and solving for T1 yields 
  

( )( ) ( )
( )( )

p b w b i w b 0
1

w b p b

/ 1 / /
21 C

1 / 1 / 1

k k k k T k k T
T

k k k k

+ +
= =

+ + −
°  

 
 b.   Using this value in (1) yields 

2 18 CT = °  
______________________________________________________________________________ 
 
35.  SSM    WWW   REASONING  The rate at which heat is conducted along either rod is 

given by Equation 13.1, ( )/Q t k A T L= ∆ / .  Since both rods conduct the same amount of 
heat per second, we have 

 

      s s i i

s i

 
=

k A T k A T
L L

∆ ∆
            (1) 

 
 Since the same temperature difference is maintained across both rods, we can algebraically 

cancel the ∆T terms.  Because both rods have the same mass, ; in terms of the sm m= i
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densities of silver and iron, the statement about the equality of the masses becomes 
, or ( ) (s s s i i iL A L Aρ ρ= )

   s i i

i s

A L
A Ls

ρ
ρ

=             (2) 

 
 Equations (1) and (2) may be combined to find the ratio of the lengths of the rods.  Once the 

ratio of the lengths is known, Equation (2) can be used to find the ratio of the cross-sectional 
areas of the rods.  If we assume that the rods have circular cross sections, then each has an 
area of 2A rπ= .  Hence, the ratio of the cross-sectional areas can be used to find the ratio 
of the radii of the rods.   

 
 SOLUTION    
 a.   Solving Equation (1) for the ratio of the lengths and substituting the right hand side of 

Equation (2) for the ratio of the areas, we have 
 

( )
( )

2
s i is s s s s i

i i i i i si s s

   
     or     

   
k LL k A L k

L k A L kk L
ρ ρ

ρρ
⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
 Solving for the ratio of the lengths, we have 
 

3
s s i

3
i i s

 [420 J/(s m C )](7860 kg/m ) 2.0
 [79 J/(s m C )](10 500 kg/m ) 

L k
L k

ρ
ρ

⋅ ⋅ °
= = =

⋅ ⋅ °
 

  
 b.   From Equation (2) we have 

22
s si i i i
2

s s i s si
     or     

r rL L
L rr

π
L

ρ ρ
ρ ρπ

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 Solving for the ratio of the radii, we have  
 

3
s i i

3
i s s

7860 kg/m 1 0.61
2.010 500 kg/m

r L
r L

ρ
ρ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

______________________________________________________________________________ 
 
36. REASONING AND SOLUTION   The heat which must be removed to form a volume V of 

ice is 
 Q = mLf = ρVLf = ρAhLf 

 
 The heat is conducted through the ice to the air, so Q is Q = kA(∆T)t/L.  Thus, we have 
 

  



696   THE TRANSFER OF HEAT 

 
( )( )

( )( )( )

2
–4

3 5
f

[2.2 J/(s m C )] 15 C 3.0 10 s
1.1 10 m 0 11 mm

917 kg/m 3.35 10 J/kg 0.30 m
k T th

L Lρ

⋅ ⋅ ° ° ×∆
= = = × =

×
.  

 
 where the values for the thermal conductivity k, the density ρ, and the heat of fusion Lf have 

been taken from Table 13.1, Table 12.3, and Table 11.1, respectively. 
______________________________________________________________________________ 
 
37. CONCEPT QUESTIONS  a.  The temperature is 100.0 °C, because water boils at 100.0 °C 

under one atmosphere of pressure.  The temperature remains at 100.0 °C until all the water 
is gone.   

 
 b.  When water boils, it changes from the liquid to the vapor phase.  The heat needed to 

make the water change phase is Q = mLv, according to Equation 12.5, where m is the mass 
and Lv is the latent heat of vaporization of water. 

 
 c.  The temperature of the heating element must be greater than 100.0 °C.  This is because 

heat flows via conduction from a higher to a lower temperature and the temperature of the 
boiling water is 100.0 °C. 

 
 SOLUTION  Applying Equation 13.1 to the heat conduction and using Equation 12.5 to 

express the heat needed to boil away the water, we have 
 

( )copper
v

k A T t
Q m

L

∆
= = L  

 
 The thermal conductivity of copper can be found in Table 13.1 ( )copper  = 390 J/ s m Ck⎡ ⋅ ⋅ ° ⎤⎣ ⎦ , 

and the latent heat of vaporization for water can be found in Table 12.4 
(Lv = 22.6 × 105 J/kg).  The area A is the area of a circle or A = π R2.  Finally, the 
temperature difference is ∆T = TE – 100.0 °C.  Using this expression for ∆T in the heat-
conduction equation and solving for TE gives 

 
( )

( )( )( )
( ) ( ) ( )

copper E v
v E

Copper

3 5

E 2

100.0 C
     or     100.0 C+

2.0 10  m 0.45 kg 22.6 10  J/kg
100.0 C+ 103.3 C

390 J/ s m C 0.065 m 120 s

k A T t LmL
mL T

L k

T
π

−

− °
= = °

× ×
= ° = °

⋅ ⋅ °⎡ ⎤⎣ ⎦

At

 

______________________________________________________________________________ 
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38. CONCEPT QUESTIONS  a.  According to Equation 13.1 less heat is lost when the area 
through which the heat flows is smaller.  Since the window has the smaller area, it would 
lose less heat than the wall, other things being equal. 

 
 b.  According to Equation 13.1 more heat is lost when the thickness through which the heat 

flows is smaller.  Since the window has the smaller thickness, it would lose more heat than 
the wall, other things being equal. 

 
 c.  According to Equation 13.1 more heat is lost when the thermal conductivity of the 

material through which the heat flows is greater.  According to Table 13.1 the thermal 
conductivity of glass is ( )G = 0.80 J/ s m Ck ⋅ ⋅ ° , while the value for Styrofoam is 

. Therefore, the window would lose more heat than the wall, other 
things being equal. 

(S  = 0.010 J/ s m Ck ⋅ ⋅ °)

 
 SOLUTION  The percentage of the heat lost by the window is 
 

 

( )

( ) ( )

window

wall window

G G G G

G G

S S G GS S G G

S GS G

Percentage 100

100 100

Q
Q Q

k A T t k A
L L

k A k Ak A T t k A T t
L LL L

⎛ ⎞
= ×⎜ ⎟⎜ ⎟+⎝ ⎠

∆⎡ ⎤ ⎛ ⎞
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎜ ⎟= × =
⎢ ⎥ ⎜ ⎟∆ ∆

++⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

×

 

 
 Here, we algebraically eliminated the time t and the temperature difference ∆T, since they 

are the same in each term.  The percentage is 
 

 

( ) ( )

( ) ( ) ( ) ( )

G G

G

S S G G

S G

2

3

2 2

3

Percentage 100

0.80 J/ s m C 0.16 m

2.0 10  m 100
0.010 J/ s m C 18 m 0.80 J/ s m C 0.16 m

0.10 m 2.0 10  m

97 %

k A
L

k A k A
L L

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ×
⎜ ⎟

+⎜ ⎟
⎝ ⎠

⎧ ⎫⋅ ⋅ °⎡ ⎤⎣ ⎦⎪ ⎪
⎪ ⎪×= ×⎨ ⎬

⋅ ⋅ ° ⋅ ⋅ °⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦+⎪ ⎪
×⎩ ⎭

=

 

______________________________________________________________________________ 
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39. CONCEPT QUESTIONS  a. The cross-sectional area A through which the heat flows is 

greater for arrangement b; the cross-sectional area in b is twice that in a. 
 
 b.  The thickness L of the material through which the heat flows is greater for arrangement 

a; the thickness in a is twice that in b. 
 
 c.  For two reasons, Qa is less than Qb.  First, the area in arrangement a is smaller, and the 

heat flows in direct proportion to the area.  A smaller area means less heat.  Second, the 
thickness in arrangement a is greater, and the heat flows in inverse proportion to the 
thickness.  A greater thickness means less heat. 

 
 SOLUTION  Applying Equation 13.1 for the conduction of heat to both arrangements gives 
 

( ) ( )a b
a b

a b
     and     

kA T t kA T t
Q Q

L L
∆ ∆

= =  

 
 Note that the thermal conductivity k, the temperature difference ∆T, and the time t are the 

same in both arrangements.  Dividing Qa by Qb gives 
 

( )

( )

a

a a a

b

b

b b a

b

kA T t
Q L A

kA T tQ A
L

∆

= =
∆

L
L

 

 
 Remember that Ab = 2Aa and that La = 2Lb.  As expected then, we find that 
 

( )( )
a a b a b

b b a a b

1
42 2

Q A L A L
Q A L A L

= = =  

______________________________________________________________________________ 
 
40. CONCEPT QUESTIONS  a.  According to Equation 6.10b, power is the change in energy 

divided by the time during which the change occurs.  In this case, then, the power is P = Q/t. 
 
 b. According to the Stefan-Boltzmann law (Equation 13.2), the power radiated is 

Q/t = eσT 4A.  The power is proportional to the fourth power of the temperature T (in 
Kelvins).  Thus, a higher temperature promotes more radiated power. 

 
 c. According to the Stefan-Boltzmann law (Equation 13.2), the power radiated is 

Q/t = eσT 4A.  The power is proportional to the area A.  Thus, a smaller area generates less 
radiated power. 
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 d.  The higher temperature of bulb #1 promotes a greater radiated power.  The only way for 
both bulbs to radiate the same power, then, is for the filament area of bulb #1 to be smaller 
than that of bulb #2, in order to offset the effect of the higher temperature. 

 
 SOLUTION  Using the Stefan-Boltzmann law (Equation 13.2) for both bulbs, we have 
 

4 4
1 1 1 1 1 2 2 2 2/      and     /P Q t e T A P Q t e T Aσ σ= = = = 2

4

 
 

 Since P1 = P2, we see that 
 

4 4 4
1 1 2 2 1 1 2 2     or     e T A e T A T A T Aσ σ= =  

 
 As expected, solving for the ratio A1/A2 gives a value less than one: 
 

( )
( )

44
1 2

4 4
2 1

2100 K
0.37

2700 K

A T
A T

= = =  

______________________________________________________________________________ 
 
41. CONCEPT QUESTIONS  a.  The power radiated by the object is given by  

(Equation 13.2), where e is the emissivity of the object, σ is the Stefan-Boltzmann constant, 
T is the Kelvin temperature of the object, and  A is the surface area of the object. 

4/Q t e T Aσ=

 
b. The power that the object absorbs from the room is given by Q/t = eσT0

4A.  Except for the 
temperature T0 of the room, this expression has the same form as that for the power radiated 
by the object.  Note especially that the area A is the radiation area for the object, not the 
room.  Review part b of the solution to Example 8 in the text to understand this important 
point. 

 
 c. The power emitted by the object is proportional to the fourth power of the its temperature, 

and the power absorbed is proportional to the fourth power of the room’s temperature.  
Since the object emits more power than it absorbs, its temperature T must be greater than the 
room’s temperature T0. 

 
 SOLUTION  The object emits three times more power than it absorbs from the room, so it 

follow that (Q/t)emit = 3(Q/t)absorb.  Using the Stefan-Boltzmann law for each of the powers, 
we find 

4 4
03e T A e T Aσ σ=  

 Solving for T gives 
 

( )4 4
03 3 293 K 386 KT T= = =  

______________________________________________________________________________ 
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42. CONCEPT QUESTIONS  a.  According to the Stefan-Boltzmann law, the power radiated 
by an object is Q/t = eσT 4A, where A is the area from which the radiation is emitted.  The 
power radiated is proportional to the fourth power of the temperature T.  Therefore, other 
things being equal, the greater surface temperature of Sirius B would imply that its radiated 
power is greater than that of our sun. 

 
 b.  The fact that Sirius B radiates less power than our sun, means that something is offsetting 

the effect of the greater surface temperature in the Stefan-Boltzmann law.  This can only be 
the surface area A.  The power radiated is proportional to A, according to the law.  A smaller 
area means a smaller radiated power.  Therefore, the surface area of Sirius B must be less 
than the surface area of our sun. 

 
 c.  The surface area of a sphere is 4πR2, where R is the radius.  Therefore, having less 

surface area, Sirius B must also have a radius that is less than the radius of our sun. 
 
 SOLUTION  Writing the Stefan-Boltzmann law (Equation 13.2) for both stars, we have 
 

4 4
Sirius Sirius Sirius Sirius Sun Sun Sun Sun/      and     /Q t e T A Q t e T Aσ σ= =  

 
 Dividing the equation for Sirius B by the equation for our sun and remembering that 

QSirius/tSirius = (0.040) QSun/tSun, we obtain 
 

( )4 4
Sirius Sirius Sirius Sirius Sun Sun Sirius Sirius

4 4
Sun Sun Sun SunSun Sun Sun Sun

/ 0.040 /
     or     

/ /
Q t e T A Q t T A

Q t Q te T A T A
σ

σ
= =  

 
 Simplifying this result and using the fact that the surface area of a sphere is 4πR2 gives 
 

4 2
Sirius Sirius

4 2
Sun Sun

0.040
T R

T R
π
π

=  

 
 Solving for the radius of Sirius B gives 
 

( )
2 2

8 6Sun Sun
Sirius Sun

Sirius Sun
0.040 0.040 6.96 10  m 8.7 10  m

4
T T

R R
T T

⎛ ⎞ ⎛ ⎞
= = × =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
×  

 
 As expected, the radius of Sirius B is less than that of our sun, so much so that it is called a 

white dwarf star. 
______________________________________________________________________________ 
 
43. CONCEPT QUESTIONS  a. The heat Q conducted during a time t through a bar of length 

L and cross-sectional area A is ( )k A T t
Q

L
∆

=  (Equation 13.1). The heat depends on two 
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geometrical factors, the cross-sectional area and the length. Even though the cross-sectional 
area for heat conduction through the block in C is greater than that in A, it does not 
necessarily mean that more heat is conducted in C, because the lengths of the conduction 
paths are different. 

 
 b.  Even though the length of material through which heat is conducted in block A is greater 

than that in B, it does not necessarily follow that less heat is conducted in A, because the 
blocks have different cross-sectional areas. 

 
 c.  The heat Q conducted during a time t through a bar of length L and cross-sectional area A 

is ( )k A T t
Q

L
∆

=  (Equation 13.1). The cross-sectional area and length of each block are:  

 The heat 
conducted through each block is  

2
A 0 A2  and 3 ,A L L L= = 0 3  and 2 ,A L L= = 0=2

B 0 B 0L 2
C 0 C6  and .A L L L=

 
( ) ( ) ( )32

A 0 B 0 C 03 2                    6Q L k Tt Q L k Tt Q L k Tt= ∆ = ∆ = ∆  

 
 Therefore, the ranking of the heat conduction is (highest to lowest): C, B, A 
 
 SOLUTION  From the result of part c in the Concept Questions, the heat conducted in each 

case is: 
 
 Case A  

 ( ) ( ) ( ) ( )( ) 32 2
A 03 3 0.30 m 250 J/ s m C 35 C 19 C 5.0 s 4.0 10  JQ L k Tt ⎡ ⎤= ∆ = ⋅ ⋅ ° ° − ° = ×⎣ ⎦  

 
 Case B  

 ( ) ( ) ( ) ( )( ) 33 3
B 02 2 0.30 m 250 J/ s m C 35 C 19 C 5.0 s 9.0 10  JQ L k Tt ⎡ ⎤= ∆ = ⋅ ⋅ ° ° − ° = ×⎣ ⎦  

 
 Case C 

 ( ) ( ) ( ) ( )( ) 4
C 06 6 0.30 m 250 J/ s m C 35 C 19 C 5.0 s 3.6 10  JQ L k Tt ⎡ ⎤= ∆ = ⋅ ⋅ ° ° − ° = ×⎣ ⎦  

______________________________________________________________________________ 
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44. CONCEPT QUESTIONS  a.  The net radiant power emitted by the bar in part (a) of the 
drawing is zero. The reason is that the temperature of the bar is the same as that of the room, 
and this temperature does not change. Therefore, the bar emits the same power into the 
room as it absorbs from the room, so the net radiant power emitted by the bar is zero. 

 
 b. The two bars in part (b) of the drawing emit more power. According to Equation 13.2, the 

radiant power (or energy per unit time) emitted by an object is , which is 
directly proportional to its surface area A. The two bars in part (b) have a greater total 
surface area than the single bar in part (a). 

4/Q t e T Aσ=

 
 c. The two bars in part (b) of the drawing also absorb more power. From the results of 

Concept Question b, we know that the two bars emit more power because of their greater 
surface area. However, since their temperature does not change, the two bars must absorb as 
much power as they emit. Thus, they absorb more power from the room than the single bar 
in part (a). 

 
 SOLUTION   
 a.  The power (or energy per unit time) absorbed by the two bars in part (b) of the drawing 

is given by , where A4
2/Q t e T Aσ= 2 is the total surface area of the two bars: . 

The power absorbed by the single bar in A is , where A

2
2 028A L=

4
1/Q t e T Aσ= 1 is the total surface 

area of the single bar: .The ratio of the power P2
1 22A = 0L 2 absorbed by the two bars in part 

(b) to the power  P1absorbed by the single bar in part (a) is 
 

( )
( )

4 2
02

4 2
1 0

28 
1.27

22 

e T LP
P e T L

σ

σ
= =  

 
 b.  If the power absorbed by the two bars in part (b) of the drawing is the same as that 

absorbed by the single bar in part (a), then 
 

4 4
1 1 2 2

Power absorbed Power absorbed
 

by single bar by two bars 
in part ( ) in part ( )

  

a b

e T A e T Aσ σ=  

 
Solving for the temperature of the room and the bars in part (b) gives 
 

( )
2
01 442 1 2

2 0

22
450.0 K 424 K

28
LA

T T
A L

= = =  

______________________________________________________________________________ 
 

 


