MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

Find the inverse, if it exists, for the matrix.

$$1) \left[\begin{array}{c} 1 \ 0 \ 0 \\ -1 \ 1 \ 0 \\ 1 \ 1 \ 1 \end{array} \right]$$

1) _____

 $\begin{bmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$

 $\left[\begin{array}{cc}1 \ 1 \ 1 \\ 0 \ 1 \ 1\end{array}\right]$

 $\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-2 & -1 & 1
\end{array}\right]$

 $2)\begin{bmatrix} 2 & 1 \\ 0 & -6 \end{bmatrix}$

Solve the system of equations by using the inverse of the coefficient matrix.

3) -2x + 6y = 6

3x + 2y = 13

A) (3, 2)

B) (-3, -2)

C)(2,3)

D) (-2, -3)

4) 5x + y = 27

-2x + 4y = -24A) (-3, 6)

C) (6, -3)

B) (-3, -6)

D) No inverse, no solution for system

5) x + y + z = 2

x - y + 2z = -9

4x + y + z = 14

A) (-5, 4, 3)

C) (4, 3, -5)

B) (-5, 3, 4)

D) No inverse, no solution for system

Graph the feasible region for the system of inequalities.

6) $3x + 5y \le 15$

 $x - 3y \le 3$

5) ____

4)

B)

$$7) x + 2y \le 2$$

7)

$$x + y \ge 0$$

A)

C)

B)

D)

Graph the feasible region of the system.

8) A manufacturer of wooden chairs and tables must decide in advance how many of each item will be made in a given week. Use the table to find the system of inequalities that describes the manufacturer's weekly production.

Use x for the number of chairs and y for the number of tables made per week. The number of work-hours available for construction and finishing is fixed.

	Hours	Hours	Total
	per	per	hours
	chair	table	available
Construction	3	5	30
Finishing	2	4	24

$$y + 3x \le 9$$

$$x \ge 0$$

A)

C)

B)

D)

10) $2x + 3y \ge 6$ $x - y \le 3$ $x \ge 1$

A)

C)

B)

10) _____

D)

11)
$$z = 8x - 14y$$

- A) Maximum of 40; minimum of -84
- C) Maximum of -60; minimum of -84
- B) Maximum of -84; minimum of 0
- D) Maximum of 40; minimum of 0

12) _____

12)
$$z = x + 7y$$

- A) No maximum; minimum of 14
- C) Maximum of 63; minimum of 10
- B) Maximum of 63; no minimum
- D) No maximum; minimum of 10

Use graphical methods to solve the linear programming problem.

$$z = 8x + 12y$$

subject to:

$$40x + 80y \le 560$$

$$6x + 8y \le 72$$

$$x \ge 0$$

$$y \ge 0$$

- A) Maximum of 96 when x = 9 and y = 2
- C) Maximum of 92 when x = 4 and y = 5
- B) Maximum of 100 when x = 8 and y = 3

13)

14) _____

D) Maximum of 120 when x = 3 and y = 8

14) Maximize
$$z = 2x + 5y$$

subject to:

$$3x + 2y \le 6$$

$$-2x + 4y \le 8$$

$$x \ge 0$$

$$y \ge 0$$

- A) Maximum of 19 when x = 2 and y = 3
- C) Maximum of 10 when x = 0 and y = 2
- B) Maximum of $\frac{49}{4}$ when $x = \frac{1}{2}$ and $y = \frac{9}{4}$
- D) Maximum of $\frac{34}{3}$ when $x = \frac{2}{3}$ and y = 2

Solve the problem.

- 15) The Acme Class Ring Company designs and sells two types of rings: the VIP and the SST. They can produce up to 24 rings each day using up to 60 total man-hours of labor. It takes 3 man-hours to make one VIP ring and 2 man-hours to make one SST ring. How many of each type of ring should be made daily to maximize the company's profit, if the profit on a VIP ring is \$30 and on an SST ring is \$40?
- 15) _____

A) 8 VIP and 16 SST

B) 12 VIP and 12 SST

C) 0 VIP and 24 SST

- D) 16 VIP and 8 SST
- 16) A company manufactures two ballpoint pens, silver and gold. The silver requires 2 min in a grinder and 3 min in a bonder. The gold requires 7 min in a grinder and 8 min in a bonder. The grinder can be run no more than 64 hours per week and the bonder no more than 80 hours per week. The company makes a \$3 profit on each silver pen sold and \$8 on each gold. How many of each type should be made each week to maximize profits?
- 16) _____

- A) Silver pens: 2 Gold pens: 548
- B) Silver pens: 0 Gold pens: 547
- C) Silver pens: 548 Gold pens: 3
- D) Silver pens: 3 Gold pens: 547

Introduce slack variables as necessary and write the initial simplex tableau for the problem.

- 17) Maximize z = 4x + ysubject to: $2x + 5y \le 10$
 - $3x + 3y \le 14$
 - $x \ge 0, y \ge 0$

- B) x y s_1 s_2 z $\begin{bmatrix}
 2 & 5 & 1 & 0 & 0 & 10 \\
 3 & 3 & 0 & 1 & 0 & 14 \\
 4 & 1 & 0 & 0 & 1 & 0
 \end{bmatrix}$

18) Maximize
$$z = 4x + 2y$$
 subject to: $2x + y \le 16$

$$3x + 5y \le 65$$

$$x\geq 0,\ y{\geq 0}$$

The matrix shown represents a simplex tableau after a sequence of pivot operations has been performed on an initial tableau. Answer the question about the simplex tableau.

19)
$$\times$$
 y s₁ s₂ f

$$\begin{bmatrix}
1 & 0 & 46 & 61 & 0 & | & 139 \\
0 & 1 & 8 & 85 & 0 & | & 152 \\
\hline
0 & 0 & 12 & 167 & 1 & | & 260
\end{bmatrix}$$

Does this table indicate that a maximum has been reached? If so, what is the maximum and where is it reached?

- A) No, maximum has not been reached
- B) Yes; maximum value of f is 139 when x = 12 and y = 167
- C) Yes; maximum value of f is 1 when x = 139 and y = 152
- D) Yes; maximum value of f is 260 when x = 139 and y = 152

Does this tableau indicate that a maximum has been reached? If so, what is the maximum value and where is it reached?

- A) No, maximum has not been reached
- B) Yes; maximum value of f is 1 when x = 57 and y = 103
- C) Yes; maximum value of f is 163 when x = 0 and y = 0
- D) Yes; maximum value of f is 163 when x = 57 and y = 103

Use the simplex algorithm to solve the linear programming problem.

21) Maximize
$$5x + 3y = f$$

Subject to
$$2x + 4y \le 13$$

$$x + 2y \le 6$$

$$x \ge 0, y \ge 0$$

- A) maximum: f = 32.5 when x = 6.5 and y = 0
- B) maximum: f = 9 when x = 0 and y = 3
- C) maximum: f = 30 when x = 6 and y = 0
- D) maximum: f = 30.75 when x = 6 and y = 0.25

22) Maximize 9x + 8y = f

Subject to
$$x + 2y \le 2$$

$$3x + 2y \le 8$$

$$2x + 3y \le 10$$

$$x \ge 0, y \ge 0$$

- A) maximum: f = 16 when x = 0, y = 2
- C) maximum: f = 17 when x = 1, y = 1
- B) maximum: f = 45 when x = 5, y = 0
- D) maximum: f = 18 when x = 2, y = 0

23) Maximize
$$f = 3x + 4y + 2z$$

Subject to

$$x - 2y \leq 12$$

$$3y + z \le 9$$
$$x + y - z \le 14$$

$$x \ge 0, y \ge 0, z \ge 0$$

A) maximum:
$$f = \frac{187}{3}$$
 when $x = \frac{47}{3}$, $y = \frac{11}{6}$, $z = 4$

- B) maximum: f = 63 when $x = \frac{47}{3}$, y = 2, z = 4
- C) maximum: $f = \frac{175}{3}$ when x = 15, $y = \frac{11}{6}$, z = 3
- D) maximum: $f = \frac{184}{3}$ when $x = \frac{47}{3}$, $y = \frac{11}{6}$, $z = \frac{7}{2}$

A manufacturing company wants to maximize profits on products A, B, and C. The profit margin is \$3 for A, \$6 for B, and \$15 for C. The production requirements and departmental capacities are as follows:

Department | Production requirement | Departmental capacity by product (hours) (Total hours) В $\overline{\mathbf{C}}$ Α Assembling 2 3 2 30,000 **Painting** 1 2 38,000 2 1 28,000 **Finishing** 2 3

- 24) What are the coefficients of the objective function?
 - A) 3, 6, 15
- B) 2, 3, 1
- C) 1, 2, 2
- D) 2, 3, 2

- A) A + 2B + 3C \leq 30,000
- C) $2A + 3B + 2B \le 38,000$

B) $2A + 3B + 2C \le 28,000$ D) $2A + 3B + 2C \le 30,000$

24)

21) _____

22) _____

23) _____

Find the objective function and the constraints, and then solve the problem by using the simpex method

- 26) A company manufactures two ballpoint pens, silver and gold. Each silver pen requires 3 min in a grinder and 4 min in a bonder. Each gold pen requires 2 min in a grinder and 7 min in a bonder. The grinder can be run no more than 40 hours per week and the bonder no more than 63 hours per week. The company makes a \$6 profit on each silver pen sold and \$10 on each gold. How many of each type should be made each week to maximize profits?
- 26) _____

A) Maximize
$$f = 6x + 10y$$

Subject to $3x + 4y \le 2400$
 $2x + 7y \le 3780$
 $x \ge 0, y \ge 0$

Maximum profit is \$4800 when 800 silver and 0 gold pens are made

B) Maximize f = 6x + 10ySubject to $3x + 2y \le 2400$ $4x + 7y \le 3780$ $x \ge 0, y \ge 0$

Maximum profit is \$5400 when 0 silver and 540 gold pens are made

C) Maximize f = 6x + 10ySubject to $3x + 2y \le 2400$ $4x + 7y \le 3780$ $x \ge 0, y \ge 0$

Maximum profit is \$5600 when 710 silver and 134 gold pens are made

D) Maximize f = 6x + 10ySubject to $3x + 4y \le 2400$ $2x + 7y \le 3780$ $x \ge 0, y \ge 0$

Maximum profit is \$5400 when 0 silver and 540 gold pens are made

Find the specified matrix.

27) Find the dual matrix for the following linear programming problem.

Minimize f = 4x + ysubject to $x + 5y \ge 6$ $3x + y \ge 6$ $x \ge 0, y \ge 0$

A)
$$\begin{bmatrix} 1 & 3 & | & 4 \\ 5 & 1 & | & 1 \\ \hline 6 & 6 & | & 1 \end{bmatrix}$$

A) B) C) D)
$$\begin{bmatrix} 1 & 3 & | & 4 \\ 5 & 1 & | & 1 \\ \hline & 6 & 6 & | & 1 \end{bmatrix}$$
 C)
$$\begin{bmatrix} -1 & -5 & | & -6 \\ \hline -3 & -1 & | & -6 \\ \hline & 4 & 1 & | & 0 \end{bmatrix}$$
 C)
$$\begin{bmatrix} 1 & 3 & | & 4 \\ \hline 5 & 1 & | & 1 \\ \hline & 6 & 6 & | & 0 \end{bmatrix}$$
 D)
$$\begin{bmatrix} 1 & 5 & | & 6 \\ \hline 3 & 1 & | & 6 \\ \hline 4 & 1 & | & 0 \end{bmatrix}$$

D)
$$\begin{bmatrix} 1 & 5 & 6 \\ 3 & 1 & 6 \\ \hline 4 & 1 & 0 \end{bmatrix}$$

27) _____

28) Find the dual matrix for the following linear programming problem.

Maximize
$$f = -3x + 4y$$

subject to $2x + y \ge 11$
 $x + 2y \le 12$

$$x \ge 0, y \ge 0$$

A)
$$\begin{bmatrix}
2 & 1 & 11 \\
1 & 2 & 12 \\
\hline
-3 & 4 & 0
\end{bmatrix}$$
C)

$$\begin{bmatrix}
2 & 1 & -3 \\
1 & 2 & 4 \\
\hline
11 & 12 & 0
\end{bmatrix}$$

$$\begin{bmatrix} -2 & 1 & -3 \\ -1 & 2 & 4 \\ \hline -11 & 12 & 0 \end{bmatrix}$$
D)

28) _____

29) _____

30) _____

$$\begin{bmatrix} -2 & -1 & -11 \\ 1 & 2 & 12 \\ \hline -3 & 4 & 0 \end{bmatrix}$$

Formulate the dual problem. Use y_1 , y_2 , and y_3 as the variables. Given: $y_1 \ge 0$, $y_2 \ge 0$, and $y_3 \ge 0$.

29) Minimize
$$w = 6x_1 + 3x_2$$

subject to:
$$3x_1 + 2x_2 \ge 35$$

 $x_1 + 5x_2 \ge 39$
 $x_1 \ge 0, x_2 \ge 0$

A) Maximize
$$z = 35y_1 + 39y_2$$

subject to:
$$3y_1 + 2y_2 \le 6$$

$$y_1 + 5y_2 \le 3$$

C) Maximize $z = 35y_1 + 39y_2$

subject to:
$$3y_1 + y_2 \le 6$$

 $2y_1 + 5y_2 \le 3$

B) Maximize
$$z = 35y_1 + 39y_2$$

subject to:
$$3y_1 + y_2 \ge 6$$

 $2y_1 + 5y_2 \ge 3$

D) Maximize
$$z = -6y_1 - 3y_2$$

subject to:
$$-3y_1 - 2y_2 \le -35$$

 $-y_1 - 5y_2 \le -39$

30) Minimize
$$z = 5x_1 + 7x_2$$

Subject to:
$$9x_1 + 3x_2 \ge 205$$

 $x_1 + x_2 \ge 22$
 $2x_1 + 6x_2 \ge 89$
 $x_1 \ge 0, x_2 \ge 0$

A) Maximize
$$w = 205y_1 + 22y_2 + 89y_3$$

Subject to:
$$9y1 + y2 + 2y3 \le 5$$

 $3y_1 + y_2 + 6y_3 \le 7$

B) Maximize
$$w = -5y_1 - 7y_2$$

Subject to:
$$-9y_1 - 3y_2 \le -205$$

 $-y_1 - y_2 \le -22$
 $-2y_1 - 6y_2 \le -89$

C) Maximize
$$w = 205y_1 + 22y_2 + 89y_3$$

Subject to:
$$9y_1 + y_2 + 2y_3 \ge 5$$

 $3y_1 + y_2 + 6y_3 \ge 7$

D) Maximize
$$w = 89y_1 + 22y_2 + 205y_3$$

Subject to:
$$2y1 + y2 + 9y3 \le 5$$

 $6y_1 + y_2 + 3y_3 \le 7$

Find the transpose of the matrix.

31)

$$\begin{bmatrix} 3 & 4 & 4 \\ 2 & 1 & 3 \\ 9 & 8 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 & 9 \\ 4 & 1 & 8 \\ 4 & 3 & 7 \end{bmatrix}$$

B)

$$\begin{bmatrix}
 4 & 4 & 3 \\
 1 & 3 & 2 \\
 8 & 7 & 9
 \end{bmatrix}$$

C)

$$\begin{bmatrix} 2 & 1 & 2 \\ 3 & 4 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$

D

$$\begin{bmatrix}
987 \\
213 \\
344
\end{bmatrix}$$

31) _____

32) ____

33) _____

34) _____

32)

$$\begin{bmatrix}
230 & 6 \\
383 & 9 \\
1262 & 4 \\
91615
\end{bmatrix}$$

Δ

B)

C)

$$\begin{bmatrix} 2 & 3 & 12 & 9 \\ 3 & 8 & 6 & 1 \\ 0 & 3 & 2 & 6 \\ 6 & 9 & 4 & 15 \end{bmatrix}$$

D

$$\begin{bmatrix}
9 & 1 & 6 & 15 \\
12 & 6 & 2 & 4 \\
3 & 8 & 3 & 9 \\
2 & 3 & 0 & 6
\end{bmatrix}$$

Use the simplex method to solve the linear programming problem.

33) Minimize $w = 4y_1 + 4y_2$

subject to:
$$5y_1 + 10y_2 \ge 100$$

 $10y_1 + 20y_2 \ge 150$
 $y_1 \ge 0, y_2 \ge 0$

A) 20 when $y_1 = 4$ and $y_2 = 4$

C) 10 when
$$y_1 = 0$$
 and $y_2 = 50$

B) 60 when $y_1 = 0$ and $y_2 = 20$

D) 40 when
$$y_1 = 0$$
 and $y_2 = 10$

34) Minimize $w = y_1 + 3y_2 + 2y_3$

subject to:
$$y_1 + y_2 + y_3 \ge 50$$

 $2y_1 + y_2 \ge 25$
 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$

A) 75 when $y_1 = 0$, $y_2 = 75$, and $y_3 = 50$

C) 50 when
$$y_1 = 50$$
, $y_2 = 0$, and $y_3 = 0$

B) 12.5 when $y_1 = 1$, $y_2 = 2$, and $y_3 = 1$

D) 87.5 when
$$y_1 = 0$$
, $y_2 = 0$, and $y_3 = 1$

Answer Key Testname: 1324-2-REVIEW

- 1) D
- 2) C
- 3) A 4) C 5) C

- 6) C
- 7) D 8) C
- 9) D
- 10) D
- 11) A
- 12) D
- 13) B
- 14) B
- 15) C
- 16) A 17) C
- 18) B
- 19) D
- 20) A
- 21) C
- 22) D
- 23) D
- 24) A
- 25) D
- 26) C
- 27) C 28) B
- 29) C
- 30) A
- 31) A
- 32) C
- 33) D
- 34) C