MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine the number of outcomes in the event. Then decide whether the event is a simple event or not. Explain you reasoning.

1) You roll a six-sided die. Event B is rolling an even number.					
ç					
A) 3; Simple event because the die is only rolled once.B) 2; Not a simple event because it is an event that consists of more than a single outcome.					
-			-		
C) 1; Simple event because it is an event that consists of a single outcome.D) 3; Not a simple event because it is an event that consists of more than a single outcome.					
D) 3; Not a simple eve	nt because it is an event tr	hat consists of more than	a single outcome.		
2) You randomly select a co	omputer from a batch of 50) which contains 3 defec	tive computers. Event B	2)	
is selecting a defective co	omputer.				
A) 1; Simple event bec	ause it is an event that cor	nsists of only one type of	f computer.		
B) 50; Not a simple ev	ent because it is an event	that consists of more tha	n a single outcome.		
-	ause it is an event that cor				
· •	nt because it is an event th		-		
From the information provided, cr	reate the sample space of	possible outcomes.			
3) Flip a coin twice.	cute the sumple space of			3)	
A) HH HT TH TT	B) HH TT HT HT	C) HH HT TT	D) HT TH		
	2)	0)11111111	2)		
Determine whether the events are	-				
4) Draw one ball colored re	d from a bag.			4)	
Draw one ball colored bl	ue from the same bag.				
A) Yes		B) No			
Find the indicated complement.					
5) The probability that Luis statistics test.	will pass his statistics tes	t is 0.26. Find the probab	oility that he will fail his	5)	
A) 0.35	B) 0.74	C) 3.85	D) 0.13		
6) If a person is randomly s	elected, find the probabili	ty that his or her birthda	av is not in May. Ignore	6)	
leap years.		· j ·		-)	
	31	334	31		
A) $\frac{11}{12}$	B) $\frac{31}{365}$	C) $\frac{334}{365}$	D) $\frac{31}{334}$		
12	000	000	001		
Find the indicated probability.					
7) If you pick a card at rand	lom from a well shuffled o	leck, what is the probab	ility that you get a face	7)	
card or a spade?					

A) $\frac{1}{22}$ B) $\frac{25}{52}$ C) $\frac{11}{26}$ D) $\frac{9}{26}$

8) A sample of 100 wood and 100 graphite tennis rackets are taken from the warehouse. If 9 wood and 14 graphite are defective and one racket is randomly selected from the sample, find the probability that the racket is wood or defective.

8)

9)

- A) 0.545
- B) 0.115
- C) 0.57
- D) There is insufficient information to answer the question.
- 9) 100 employees of a company are asked how they get to work and whether they work full time or part time. The figure below shows the results. If one of the 100 employees is randomly selected, find the probability of getting someone who carpools or someone who works full time.

2 1 3 4 1. Public transportation: 8 full time, 6 part time 2. Bicycle: 4 full time, 3 part time 3. Drive alone: 29 full time, 32 part time 4. Carpool: 8 full time, 10 part time A) 0.59 C) 0.28 D) 0.51 B) 0.67 10) _ 10) A 6-sided die is rolled. Find P(3 or 5). C) $\frac{1}{36}$ D) $\frac{1}{6}$ A) $\frac{1}{3}$ B) 2 11) A card is drawn from a well-shuffled deck of 52 cards. Find P(drawing an ace or a 9). 11) _____ C) $\frac{4}{13}$ D) $\frac{13}{2}$ A) $\frac{2}{13}$ B) 8 12) A bag contains 6 red marbles, 2 blue marbles, and 1 green marble. Find P(not blue). 12) $C)\frac{2}{9}$ D) $\frac{9}{7}$ A) $\frac{7}{9}$ B) 7 13) The table below describes the smoking habits of a group of asthma sufferers. 13)

		Occasional	Regular	Heavy	
	Nonsmoker	smoker	smoker	smoker	Total
Men	351	47	70	48	516
Women	395	40	87	43	565
Total	746	87	157	91	1081

If one of the 1081 people is randomly selected, find the probability of getting a regular or heavy smoker.

A) 0.476	B) 0.229	C) 0.109	D) 0.145

-		ts. If two voters are randomly sele ts. Round to the nearest thousand C) 0.040	2	14)	
		different possible outcomes: 1-1, 1 lity of getting a sum of 5 every tin		15)	
A) 0.00032	B) 0.04	C) 0.00001694	D) 0.00005168		
16) You are dealt two cards successively (without replacement) from a shuffled deck of 52 playing cards. Find the probability that both cards are black. Express your answer as a simplified fraction.					
A) $\frac{13}{51}$	B) $\frac{1}{2,652}$	C) $\frac{25}{102}$	D) $\frac{25}{51}$		
Find the indicated probability. F 17) The table below shows under 21 years of age between 21 and 40 over 40 years of age		erences of people in three age gro		17)	
If one of the 255 subjec of age given that they of A) $\frac{6}{17}$	•	ted, find the probability that the p B) $\frac{2}{5}$	erson is over 40 years		
C) $\frac{5}{17}$		5 D) None of the above	is correct.		
Evaluate the expression.					
$18)\frac{12!}{7!}$				18)	
A) 2!	B) <u>12</u> 7	C) 95,040	D) 84,000		
19) 5 ^P 4 A) 24	B) 120	C) 1	D) 5	19)	
20) 8 ^C 3 A) 112	B) 120	C) 56	D) 3	20)	
Solve the problem. 21) There are 13 members of how many different su A) 120		ors. If they must form a subcomm ssible? C) 154,440	ittee of 5 members, D) 371,293	21)	
,	,	4 of 12 tax returns for an audit? C) 11,880	D) 495	22)	

	not allowed?	D) (D) 242	
	A) 210	B) 6	C) 5	D) 343	
	24) How many ways can	6 people be chosen and a	rranged in a straight line	if there are 8 people to	24)
	choose from?				
	A) 48	B) 720	C) 20,160	D) 40,320	
	25) In a certain lottery, fiv	ve different numbers betv	veen 1 and 31 inclusive ar	e drawn. These are the	25)
				numbers in the same order	<i>,</i>
	-	rawn. What is the probab			
	A) $\frac{120}{20,389,320}$	B) <u>1</u>	C) $\frac{1}{31!}$	$D) = \frac{1}{1}$	
	A) 20,389,320	b) <u>120</u>	$()\frac{1}{31!}$	D) $\frac{1}{20,389,320}$	
Ties 4	ha fun damantal counting		a h l a m		
Use t	he fundamental counting			long closures. There are 7	26)
			an be made with short or hirts are available from th		20)
	A) 28	B) 11	C) 13	D) 56	
	A) 20	<i>D</i>) 11	C) 15	<i>D)</i> 30	
	27) How many license nl	ates can be made consisti	ng of 2 letters followed by	3 digite?	27)
	A) 676,000	B) 67,600	C) 11,881,376	D) 100,000	<i>27)</i>
	11, 0, 0,000	2) 01,000	0) 11,001,070	2) 100,000	
Eind	the mean of the given pro	hability distribution			
Fillu	28) The number of golf ba		of a pro shap has the fall	• 1 1 11.	20)
	201 me number of goin bar				
			s of a pro shop has the foll	lowing probability	28)
	distribution.		s of a pro shop has the foll	owing probability	28)
	distribution. $x \mid P(x)$			owing probability	28)
	distribution. $\begin{array}{c c} x & P(x) \\ \hline 3 & 0.14 \end{array}$			lowing probability	28)
	distribution. $ \begin{array}{c c} x & P(x) \\ \hline 3 & 0.14 \\ 6 & 0.25 \end{array} $			owing probability	28)
	distribution.			owing probability	28)
	distribution. x P(x) 3 0.14 6 0.25 9 0.36 12 0.15			owing probability	28)
	distribution.	B) μ = 5.79	C) μ = 9.06	The probability D $\mu = 8.46$	26)
	distribution. x P(x) 3 0.14 6 0.25 9 0.36 12 0.15 15 0.10 $A) \mu = 9$	B) μ = 5.79	C) μ = 9.06	D) μ = 8.46	
	distribution.	B) $\mu = 5.79$ reports that the probabili	C) μ = 9.06 ties that 0, 1, 2, and 3 burg		28) <u> </u>
	distribution. x = P(x) 3 = 0.14 6 = 0.25 9 = 0.36 12 = 0.15 15 = 0.10 $A) \mu = 9$ 29) A police department r given day are 0.48, 0.3	B) μ = 5.79 reports that the probabili 39, 0.12, and 0.01, respecti	C) μ = 9.06 ties that 0, 1, 2, and 3 burg vely.	D) $\mu = 8.46$ glaries will be reported in a	
	distribution.	B) $\mu = 5.79$ reports that the probabili	C) μ = 9.06 ties that 0, 1, 2, and 3 burg	D) μ = 8.46	
Provi	distribution. x = P(x) 3 = 0.14 6 = 0.25 9 = 0.36 12 = 0.15 15 = 0.10 $A) \mu = 9$ 29) A police department r given day are 0.48, 0.3	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$	D) $\mu = 8.46$ glaries will be reported in a	
Provi	distribution. $ \begin{array}{c c} x & P(x) \\ \hline 3 & 0.14 \\ 6 & 0.25 \\ 9 & 0.36 \\ 12 & 0.15 \\ 15 & 0.10 \\ A) \mu = 9 \end{array} $ 29) A police department regiven day are 0.48, 0.3 A) $\mu = 1.50$	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$ se. Round to the nearest	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$ hundredth.	D) $\mu = 8.46$ glaries will be reported in a	
Provi	distribution. x P(x) 3 0.14 6 0.25 9 0.36 12 0.15 15 0.10 $A) \mu = 9 $ 29) A police department μ given day are 0.48, 0.3 $A) \mu = 1.50 $ ide an appropriate response	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$ se. Round to the nearest	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$ hundredth.	D) $\mu = 8.46$ glaries will be reported in a	29)
Provi	distribution. $\begin{array}{c c} x & P(x) \\ \hline 3 & 0.14 \\ 6 & 0.25 \\ 9 & 0.36 \\ 12 & 0.15 \\ 15 & 0.10 \\ A) \mu = 9 \end{array}$ 29) A police department is given day are 0.48, 0.3 A) $\mu = 1.50$ ide an appropriate response 30) Find the standard device $\frac{x & P(x)}{0 & 0.12}$	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$ se. Round to the nearest	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$ hundredth.	D) $\mu = 8.46$ glaries will be reported in a	29)
Provi	distribution. $ \begin{array}{c c} x & P(x) \\ \hline 3 & 0.14 \\ 6 & 0.25 \\ 9 & 0.36 \\ 12 & 0.15 \\ 15 & 0.10 \\ A) \mu = 9 \end{array} $ 29) A police department regiven day are 0.48, 0.3 A) $\mu = 1.50$ ide an appropriate response 30) Find the standard device $\frac{x & P(x)}{0 & 0.12} \\ 1 & 0.17 \end{array} $	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$ se. Round to the nearest	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$ hundredth.	D) $\mu = 8.46$ glaries will be reported in a	29)
Provi	distribution. $ \begin{array}{c cccc} x & P(x) \\ \hline 3 & 0.14 \\ 6 & 0.25 \\ 9 & 0.36 \\ 12 & 0.15 \\ 15 & 0.10 \\ A) \mu = 9 \end{array} $ 29) A police department is given day are 0.48, 0.3 A) $\mu = 1.50$ ide an appropriate response 30) Find the standard device $x & P(x) \\ \hline 0 & 0.12 \\ 1 & 0.17 \\ 2 & 0.09 \end{array} $	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$ se. Round to the nearest	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$ hundredth.	D) $\mu = 8.46$ glaries will be reported in a	29)
Provi	distribution.	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$ se. Round to the nearest	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$ hundredth.	D) $\mu = 8.46$ glaries will be reported in a	29)
Provi	distribution. $ \begin{array}{c cccc} x & P(x) \\ \hline 3 & 0.14 \\ 6 & 0.25 \\ 9 & 0.36 \\ 12 & 0.15 \\ 15 & 0.10 \\ A) \mu = 9 \end{array} $ 29) A police department is given day are 0.48, 0.3 A) $\mu = 1.50$ ide an appropriate response 30) Find the standard device $x & P(x) \\ \hline 0 & 0.12 \\ 1 & 0.17 \\ 2 & 0.09 \end{array} $	B) $\mu = 5.79$ reports that the probabili 39, 0.12, and 0.01, respect B) $\mu = 0.25$ se. Round to the nearest	C) $\mu = 9.06$ ties that 0, 1, 2, and 3 burg vely. C) $\mu = 1.14$ hundredth.	D) $\mu = 8.46$ glaries will be reported in a	29)

your expected value			ability of losing \$4. What is	
A) -\$3.85	B) \$7.56	C) -\$0.15	D) \$3.70	
	icket for \$1 out of a lottery Vhat is your expected value		prize for the one winning	32)
A) -\$0.50	B) -\$1.00	C) \$0.00	D) -\$0.40	
ssume that a procedure yield rmula to find the probability aces.		-	-	•
33) n = 4, x = 3, p = $\frac{1}{6}$				33)
A) 0.023	B) 0.015	C) 0.004	D) 0.012	
A) 0.172	B) 0.377	() (1 878	101 11 205	
	,	C) 0.828	D) 0.205	
35) An archer is able to h		e time. If she shoots 8 arro	ows, what is the probability	35)
35) An archer is able to h	hit the bull's-eye 50% of the	e time. If she shoots 8 arro	ows, what is the probability	35)
that she gets exactly A) 0.00391 nd the standard deviation, of the nearest hundredth.	nit the bull's-eye 50% of the 4 bull's-eyes? Assume each B) 0.219	e time. If she shoots 8 arro n shot is independent of t C) 0.0625	ows, what is the probability he others. D) 0.273	your answe
 35) An archer is able to I that she gets exactly A) 0.00391 and the standard deviation, σ the nearest hundredth. 36) n = 2699; p = 0.63 	nit the bull's–eye 50% of the 4 bull's–eyes? Assume each B) 0.219 , for the binomial distribu	e time. If she shoots 8 arro n shot is independent of t C) 0.0625 tion which has the state	ows, what is the probability he others. D) 0.273	
35) An archer is able to I that she gets exactly A) 0.00391 and the standard deviation, σ the nearest hundredth. 36) n = 2699; p = 0.63 A) σ = 25.08 and the mean, μ , for the binot	hit the bull's–eye 50% of the 4 bull's–eyes? Assume each B) 0.219 c, for the binomial distribu B) σ = 28.35	e time. If she shoots 8 arrows a shot is independent of t C) 0.0625 tion which has the state C) $\sigma = 29.20$	bws, what is the probability the others. D) 0.273 d values of n and p. Round D) $\sigma = 22.67$	your answe 36)
 35) An archer is able to I that she gets exactly A) 0.00391 nd the standard deviation, σ the nearest hundredth. 36) n = 2699; p = 0.63 	hit the bull's–eye 50% of the 4 bull's–eyes? Assume each B) 0.219 c, for the binomial distribu B) σ = 28.35	e time. If she shoots 8 arrows a shot is independent of t C) 0.0625 tion which has the state C) $\sigma = 29.20$	bws, what is the probability the others. D) 0.273 d values of n and p. Round D) $\sigma = 22.67$	your answe
35) An archer is able to I that she gets exactly A) 0.00391 and the standard deviation, of the nearest hundredth. 36) n = 2699; p = 0.63 A) σ = 25.08 and the mean, μ , for the binom 37) n = 671; p = 0.7 A) μ = 471.0	hit the bull's-eye 50% of the 4 bull's-eyes? Assume each B) 0.219 c, for the binomial distribu B) $\sigma = 28.35$ mial distribution which h a B) $\mu = 468.2$	e time. If she shoots 8 arrown shot is independent of the C) 0.0625 tion which has the state of C of $\sigma = 29.20$ as the stated values of n at C) $\mu = 469.7$	bws, what is the probability the others. D) 0.273 d values of n and p. Round D) $\sigma = 22.67$ and p. Round answer to the D) $\mu = 471.4$	your answe 36) e nearest ter 37)
35) An archer is able to I that she gets exactly A) 0.00391 and the standard deviation, of the nearest hundredth. 36) n = 2699; p = 0.63 A) σ = 25.08 and the mean, μ , for the bino 37) n = 671; p = 0.7 A) μ = 471.0 and the area of the shaded reg	hit the bull's-eye 50% of the 4 bull's-eyes? Assume each B) 0.219 c, for the binomial distribu B) $\sigma = 28.35$ mial distribution which h a B) $\mu = 468.2$	e time. If she shoots 8 arrown shot is independent of the C) 0.0625 tion which has the state of C of $\sigma = 29.20$ as the stated values of n at C) $\mu = 469.7$	bws, what is the probability the others. D) 0.273 d values of n and p. Round D) $\sigma = 22.67$ and p. Round answer to the D) $\mu = 471.4$	your answe 36) e nearest ter 37)
35) An archer is able to I that she gets exactly A) 0.00391 and the standard deviation, of the nearest hundredth. 36) n = 2699; p = 0.63 A) σ = 25.08 and the mean, μ , for the binom 37) n = 671; p = 0.7 A) μ = 471.0	hit the bull's-eye 50% of the 4 bull's-eyes? Assume each B) 0.219 c, for the binomial distribu B) $\sigma = 28.35$ mial distribution which h a B) $\mu = 468.2$	e time. If she shoots 8 arrown shot is independent of the C) 0.0625 tion which has the state of C of $\sigma = 29.20$ as the stated values of n at C) $\mu = 469.7$	bws, what is the probability the others. D) 0.273 d values of n and p. Round D) $\sigma = 22.67$ and p. Round answer to the D) $\mu = 471.4$	your answe 36) e nearest ter 37)

 -3.39
 -2.26
 -1.13
 1.13
 2.26
 3.39
 z

 A) 0.8708
 B) 0.8907

C) 0.8485

D) 0.1292

45) P(z < 0.97) A) 0.8315

6

C) 0.1660

B) 0.8340

45) _____

D) 0.8078

Provide an appropriate response. 46) IQ test scores are normally distributed with a mean of 100 and a standard deviation of 15. Find the x-score that corresponds to a z-score of -1.645.					
A) 91.0	C	B) 79.1	C) 82.3	D) 75.3	
Provide an appropriate response. Use the Standard Normal Table to find the probability. 47) An airline knows from experience that the distribution of the number of suitcases that get lost each week on a certain route is approximately normal with $\mu = 15.5$ and $\sigma = 3.6$. What is the probability that during a given week the airline will lose less than 20 suitcases?					
A) 0.89	944	B) 0.4040	C) 0.1056	D) 0.3944	
evenly over the rar pounds lost.	-	-		_	_
A) $\frac{2}{3}$		B) $\frac{1}{3}$	C) $\frac{1}{4}$	D) $\frac{1}{2}$	
standard	ghts of the fish in deviation of 12. I vill be between 8.0	a certain lake are normally f 16 fish are randomly sele 5 and 14.6 lb? B) 0.6730			49)
	ited probability l 18 and p = 0.30, e	by using the normal distri	ibution as an approximat	ion to the binomial di	stribution 50)
A) 0.10	-	B) 0.1958	C) 0.8513	D) 0.1239	50)
51) A certain question on a test is answered correctly by 22% of the respondents. Estimate the probability that among the next 150 responses there will be at most 40 correct answers.					
A) 0.89	997	B) 0.1003	C) 0.9306	D) 0.0694	
· .	randomly selected	s produced in a certain pla ed hair dryers, at least 219 B) 0.0869		the probability that D) 0.0823	52)
Use the normal dis	s tribution to app r probability that in	oximate the desired prob n 200 tosses of a fair die, w B) 0.8871	ability.		53)

Answer Key Testname: STATS-2-REVIEW

1) D 2) D 3) A 4) A 5) B 6) C 7) C 8) C 9) A 10) A 11) A 12) A 13) B 14) C 15) C 16) C 17) B 18) C 19) B 20) C 21) B 22) D 23) A 24) C 25) D 26) D 27) A 28) D 29) D 30) C 31) C 32) A 33) B 34) B 35) D 36) A 37) C 38) A 39) A 40) B 41) B 42) D 43) C 44) D 45) B 46) D 47) A 48) D 49) B 50) B

Answer Key Testname: STATS-2-REVIEW

51) C 52) A 53) D