Name

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

1)
$$36^{X} = 6$$

A) $\left\{\frac{1}{2}\right\}$

D)
$$\left\{-\frac{1}{2}\right\}$$

1) _____

Solve the problem.

- 2) The growth in population of a city can be seen using the formula $p(t) = 4055e^{0.002t}$, where t is 2) _____ the number of years since 1933. Use this formula to calculate the population in 1943.
 - A) 12,411
- B) 4137
- C) 4220
- D) 8274

Decide whether the given functions are inverses.

3)
$$f = \{(-1, -5), (0, 3), (3, -1), (7, 9)\}$$

 $g = \{(-5, -1), (3, 0), (-1, 3), (9, 7)\}$
A) Yes

3) _____

B) No

Write in logarithmic form.

4)
$$3^{-3} = \frac{1}{27}$$

4)

A)
$$\log_{-3} \frac{1}{27} = 3$$
 B) $\log_3 \frac{1}{27} = -3$ C) $\log_{1/27} 3 = -3$ D) $\log_3 -3 = \frac{1}{27}$

B)
$$\log_3 \frac{1}{27} = -3$$

C)
$$\log_{1/27} 3 = -3$$

D)
$$\log_3 - 3 = \frac{1}{27}$$

Solve the problem.

5) Use the formula $D = 10.0 \log (S/S_0)$, where the loudness of a sound in decibels is determined by S, the number of watt/m² produced by the soundwave, and $S_0 = 1.00 \times 10^{-12} \text{ watt/m}^2$. What is the intensity in watt/m² of a noise measured at 48 decibels? (Round to the nearest

A) $4.8 \times 10^{-10} \text{ watt/m}^2$

B) $1.2 \times 10^{14} \text{ watt/m}^2$

C) $6.3 \times 10^{-8} \text{ watt/m}^2$

D) $6.3 \times 10^{-7} \text{ watt/m}^2$

Use a calculator to find the logarithm. Give an approximation to four decimal places.

- A) -2.2790
- B) -5.2668
- C) -2.2874
- D) -2.2958

Find the future value.

- 7) \$5481 invested for 4 years at 4% compounded annually
 - A) \$6430.30
- B) \$6421.87
- C) \$6426.90
- D) \$6411.99

Find the function value. If the result is irrational, round your answer to the nearest thousandth.

8) Let
$$f(x) = 2^{x}$$
. Find $f(5)$

Solve the problem.

- 9) The hydrogen potential, pH, of a substance is defined by pH = $-\log$ [H+], where [H+] is measured in moles per liter. Find the pH of a sample of lake water whose [H+] is 3.05×10^{-9} moles per liter. (Round to the nearest tenth.)
- 9) _____

- A) 10.1
- B) 6.4

C) 7.3

D) 8.5

Write the expression as a sum, difference, or product of logarithms. Assume that all variables represent positive real numbers.

- 10) $\log_2\left(\frac{x^9 y^3}{2}\right)$ 10) _____
 - A) $(\log_2 x)^9 + (\log_2 y)^3 \log_2 2$
 - B) $9 \log_2 x + 3 \log_2 y + \log_2 2$
 - C
 - D) $(9 \log_2 x)(3 \log_2 y) \div \log_2 2$
 - E) $9 \log_2 x + 3 \log_2 y \log_2 2$

Solve the problem.

- 11) How long will it take for \$1300 to grow to \$2300 at an interest rate of 6.4% if the interest is compounded quarterly? Round the number of years to the nearest hundredth.
- 11) _____

A) 9.20

- B) 35.94
- C) 8.99
- D) 27.86
- 12) Suppose the number of Quickie hamburgers (in millions) served yearly from 1987 to 2000 can be modeled by $f(x) = 36.6e^{0.18x}$. In this formula x = 0 corresponds to 1987 and x = 13 corresponds to 2000. Approximate the year when the number served reached 90 million.
 - A) 1995
- B) 5

B) -1

- C) 1992
- D) -5

D) -3

Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

13)
$$\frac{3}{4}\log_a(p^2q^8) - \frac{1}{2}\log_a(p^5q^2)$$

13) _____

A) $\log_a(p^4q^7)$

B) $\log_a \left[\frac{q^5}{p} \right]$

C) 2

C) $\log_a \left[\frac{3q^6}{2p^3} \right]$

D) $\log_a \left(\frac{3}{4} p^2 q^8 - \frac{1}{2} p^5 q^2 \right)$

Evaluate the logarithm.

14) $\log_{10} 0.001$ A) 0

14) _____

15) _____

If f is one-to-one, find an equation for its inverse.

15)
$$f(x) = 8x^2 - 9, x \ge 0$$

A) $f^{-1}(x) = \frac{8}{\sqrt{x} + 3}$

B) $f^{-1}(x) = \sqrt{\frac{x+9}{8}}$, $x \ge -9$

C) $f^{-1}(x) = \sqrt{\frac{8}{x+3}}, x \neq -9$

D) Not a one-to-one function

Write an equivalent expression in exponential form.

16)
$$\log_{10} 10 = 1$$

A)
$$10^1 = 10$$

B)
$$10^{10} = 1$$

C)
$$10^1 = 10$$

D)
$$1^{10} = 10$$

Solve the equation. If necessary, round to the nearest thousandth.

17)
$$3x+7 = 7x$$

A) {11.006}

C) {-9.076}

17) _____

Solve the equation.

18)
$$\left(\frac{1}{4}\right)^{X} = 256$$

18)

B)
$$\left\{-\frac{1}{4}\right\}$$

C)
$$\left\{\frac{1}{4}\right\}$$

Provide an appropriate response.

19) Given that $f(x) = e^{x-1} + 3$, find $f^{-1}(x)$ and give the domain and range of $f^{-1}(x)$.

19) _____

A)
$$f^{-1}(x) = \ln(x - 3) + 1$$
, domain = $(0, \infty)$, range = $(0, \infty)$

B)
$$f^{-1}(x) = \ln(x - 3) + 1$$
, domain = $(3, \infty)$, range = $(-\infty, \infty)$

C)
$$f^{-1}(x) = \ln(x - 1) + 3$$
, domain = $(-\infty, \infty)$, range = $(-\infty, \infty)$

D)
$$f^{-1}(x) = \ln(x - 1) + 3$$
, domain = $(3, \infty)$, range = $(-\infty, \infty)$

Use a calculator to find the logarithm. Give an approximation to four decimal places.

20) ln 0.985

A) 0.0066

B) -0.0066

C) -0.0151

D) 0.0151

20) _____

Evaluate the logarithm.

21)
$$\log_8 \frac{1}{64}$$

21)

A) 8

B) 2

C) -2

D) -8

Solve the problem.

22) An earthquake had an intensity $10^{6.5}$ times more powerful than a reference level earthquake, or $10^{6.5} \cdot I_0$. What was the magnitude of this earthquake on the Richter scale? $R = log_{10}(I/I_0)$.

22) _____

- A) 3.5
- B) 15

C) 16.5

D) 6.5

Solve the equation. If necessary, round to the nearest thousandth.

23)
$$16^{3-x} = 29$$

23)

- A) {1.79}
- B) {3.82}
- C) {1.19}

D) {-1.19}

Evaluate the logarithm.

24)
$$\log_7 \frac{1}{7}$$

24)

A) -1

B) 0

C) 7

D) 1

Decide whether or not the functions are inverses of each other.

25)
$$f(x) = \frac{4+x}{x}$$
, $g(x) = \frac{4}{x-1}$

A) Yes

B) No

Solve the equation.

26)
$$\log_5(x + 2) + \log_5(x - 2) = 3$$

- A) $\left\{ \frac{23}{5} \right\}$
- B) {129}
- C) $\{\sqrt{129}\}$
- D) $\{\frac{125}{3}\}$

26) _____

27) _____

25) _____

If f is one-to-one, find an equation for its inverse.

27)
$$f(x) = (x + 7)^2$$

A) $f^{-1}(x) = \sqrt{x-7}$

B) Not a one-to-one function

C) $f^{-1}(x) = \frac{1}{\sqrt{x-7}}$

D) $f^{-1}(x) = \sqrt{x} - 7$

Use the change of base rule to find the logarithm to four decimal places.

28) log₄ 2

A) -0.5000

- B) 2.0000
- C) 0.5000
- D) 1.0000

Answer Key Testname: TEST # 4 REVIEW MATH 1314

- 1) A
- 2) B
- 3) A
- 4) B
- 5) C
- 6) C 7) D 8) C

- 9) D
- 10) E 11) C
- 12) C
- 13) B
- 14) D
- 15) B
- 16) A
- 17) D 18) A
- 19) B
- 20) C
- 21) C
- 22) D
- 23) A
- 24) A
- 25) A
- 26) C
- 27) B 28) C