

HOUSTON COMMUNITY COLLEGE SYSTEM

DEPARTMENTAL FINAL EXAM

CHEM 1311- SPRING 2019

VERSION A

CHEM 1311 FINAL EXAM (SPRING 2019)

Part I

There are 35 questions in this section. Each question carries $\mathbf{2}$ points. Choose the best answer and mark your answer on the scantron.

1) The molecular weight of a gas that has a density of $7.10 \mathrm{~g} / \mathrm{L}$ at $25.0^{\circ} \mathrm{C}$ and 1.00 atm pressure is $\ldots \quad \mathrm{g} / \mathrm{mol}$.
A) 174
B) 5.75×10^{-3}
C) 14.6
D) 6.85×10^{-2}
E) 28.0
2) Which of the following are combination reactions?
3) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (l)
4) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}$ (s)
5) $\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
6) $\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
A) 2 and 3
B) 1,2, and 3
C) 2,3 , and 4
D) 4 only
E) 1, 2, 3, and 4
7) The reaction

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}=-3351 \mathrm{~kJ}
$$

is \qquad , and therefore heat is \qquad by the reaction.
A) exothermic, absorbed
B) endothermic, released
C) exothermic, released
C) exothermic, released
D) endothermic, absorbed
E) thermoneutral, neither released nor absorbed by the reaction. -

1) \qquad
2) \qquad
3) \qquad
4) There are \qquad σ bonds and \qquad π bonds in $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$.
A) 12,2
B) 16,3
C) 14,2
D) 10,3
E) 13,2
5) The specific heat of liquid bromine is $0.226 \mathrm{~J} / \mathrm{g}-\mathrm{K}$. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from $25.00^{\circ} \mathrm{C}$ to $27.30^{\circ} \mathrm{C}$? The density of liquid bromine: 3.12 g / mL.
A) 32.4 J
B) 16.2 J
C) 300 J
D) 5.20 J
E) 10.4 J
6) Of the following, \qquad is the largest mass.
7) \qquad
A) 25 kg
B) $2.5 \times 10^{9} \mathrm{fg}$
C) $2.5 \times 10^{10} \mathrm{ng}$
D) $2.5 \times 10^{-2} \mathrm{mg}$
E) $2.5 \times 10^{15} \mathrm{pg}$
8) Given the data in the table below, $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction
9) \qquad
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
is \qquad kJ .

Substance	$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-286
$\mathrm{NO}(\mathrm{g})$	90
$\mathrm{NO}_{2}(\mathrm{~g})$	34
$\mathrm{HNO}_{3}(\mathrm{aq})$	-207
$\mathrm{NH}_{3}(\mathrm{~g})$	-46

A) -1172
B) -150
C) -1892
D) -1540
E) The $\Delta \mathrm{H}^{\circ}$ of $\mathrm{O}_{2}(\mathrm{~g})$ is needed for the calculation.
8) Which of the following substance is being reduced in the following reaction.?
8) \qquad
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right) 2(\mathrm{aq})$
A) AgNO_{3}
B) Cu
C) Ag
D) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
9) How many molecules of CH_{4} are in 48.2 g of this compound?
9) \qquad
A) 2.00×10^{23}
B) 5.00×10^{-24}
C) 1.81×10^{24}
D) 4.00
E) 4.64×10^{26}
10) Which one of the following represents an acceptable set of quantum numbers for an electron in an
10) \qquad atom? (arranged as $\mathrm{n}, \mathrm{l}, \mathrm{m}_{l}$, and m_{S})
A) $3,2,-2,-1 / 2$
B) $3,3,-4,1 / 2$
C) $3,2,0,0$
D) $3,3,3,-1 / 2$
E) $3,4,6,-1 / 2$
11) Which of the following does not have eight valence electrons?
11)
A) Xe
B) Br^{-}
C) Ca^{+}
D) Rb^{+}
E) All of the above have eight valence electrons.
12) Which combination of protons, neutrons, and electrons is correct for the isotope of copper, ${ }_{29}^{63} \mathrm{Cu}$?
12)
A) $29 \mathrm{p}^{+}, 29 \mathrm{n}^{\circ}, 63 \mathrm{e}^{-}$
B) $34 \mathrm{p}^{+}, 29 \mathrm{n}^{\circ}, 34 \mathrm{e}^{-}$
C) $29 \mathrm{p}^{+}, 34 \mathrm{n}^{\circ}, 29 \mathrm{e}^{-}$
D) $63 \mathrm{p}^{+}, 29 \mathrm{n}^{\circ}, 63 \mathrm{e}^{-}$
E) $34 \mathrm{p}^{+}, 34 \mathrm{n}^{\circ}, 29 \mathrm{e}^{-}$
13) Which species has London dispersion forces as the only intermolecular force?
A) $\mathrm{CH}_{3} \mathrm{OH}$
B) HI
C) $\mathrm{CH}_{3} \mathrm{CH}_{3}$
D) KBr
E) $\mathrm{CH}_{3} \mathrm{~F}$
14) When the following equation is balanced, the coefficient of Al is \qquad .
13) \qquad
14) \qquad

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 4
B) 1
C) 5
D) 3
E) 2
15) The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ in the presence of excess oxygen yields CO_{2} and $\mathrm{H}_{2} \mathrm{O}$:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When 2.5 mol of O_{2} are consumed in their reaction, \qquad mol of CO_{2} are produced.
A) 3.0
B) 7.5
C) 1.5
D) 4.2
E) 2.5
16) The formal charge on nitrogen in $\mathrm{NO}_{3}{ }^{-}$is \qquad where the Lewis structure of the ion is:
16) \qquad

A) -1
B) +2
C) +1
D) 0
E) -2
17) Of the following, \qquad is a valid statement of Charles' law.
17) \qquad
A) $V=$ constant $\times P$
B) $\frac{P}{T}=$ constant
C) $V=$ constant $\times n$
D) $\frac{V}{T}=$ constant
E) $P V=$ constant
18) The formula weight of calcium nitrate $\left(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)$, rounded to one decimal place, is \qquad amu. 18)
8) \qquad
A) 102.1
B) 116.1
C) 150.1
D) 204.2
E) 164.0
19) The Lewis structure of PF_{3} shows that the central phosphorus atom has \qquad nonbonding and \qquad \ldots bonding electron pair(s).
A) 1, 2
B) 1,3
C) 3,1
D) 2, 2
E) 3,3
20) Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
A) Ga, Ge
B) H, Li
C) Ca, Sr
D) C, O
E) Cs, Ba
21) The number 0.0101 has \qquad significant figures.
21) \qquad
A) 5
B) 6
C) 2
D) 4
E) 3
22) In ionic bond formation, the lattice energy of ions \qquad as the magnitude of the ion charges
20) \qquad
\qquad and the radii \qquad -.
A) increases, increase, increase
B) increases, decrease, increase
C) increases, decrease, decrease
D) decreases, increase, increase
E) increases, increase, decrease
23) A sample of a gas originally at $29^{\circ} \mathrm{C}$ and 1.25 atm pressure in a 3.0 L container is allowed to contract until the volume is 2.2 L and the temperature is $11^{\circ} \mathrm{C}$. The final pressure of the gas is
\qquad atm.
A) 2.8
B) 2.1
C) 0.38
D) 1.6
E) 2.9
23) \qquad
24) Which equation correctly represents the first ionization of calcium?
24) \qquad
A) $\mathrm{Ca}^{-}(\mathrm{g}) \rightarrow \mathrm{Ca}(\mathrm{g})+\mathrm{e}^{-}$
B) $\mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{g})$
C) $\mathrm{Ca}(\mathrm{g}) \rightarrow \mathrm{Ca}^{-}(\mathrm{g})+\mathrm{e}^{-}$
D) $\mathrm{Ca}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ca}^{-}(\mathrm{g})$
E) $\mathrm{Ca}(\mathrm{g}) \rightarrow \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}$
25) Which formula/name pair is incorrect?
25)
A) $\mathrm{FeSO}_{3} \quad$ iron(II) sulfite
B) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ iron(III) sulfide
C) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$ iron(III) sulfite
D) $\mathrm{FeSO}_{4} \quad$ iron(II) sulfate
E) $\mathrm{FeS} \quad$ iron(II) sulfide
26) What is the concentration (M) of a NaCl solution prepared by dissolving 9.3 g of NaCl in sufficient
26) \qquad water to give 350 mL of solution?
A) 0.45
B) 2.7×10^{-2}
C) 0.16
D) 18
E) 27
27) The element X has two naturally occurring isotopes. The masses (amu) and $\%$ abundances of the isot
27) are given in the table below. The average atomic mass of the element is \qquad amu.

Isotope	Abundance (\%)	Mass (amu)
31 X	35.16	31.16
34 X	64.84	34.30

A) 30.20
B) 33.20
C) 32.73
D) 35.22
E) 34.02
28) Osmium has a density of $22.6 \mathrm{~g} / \mathrm{cm}^{3}$. What volume (in cm^{3}) would be occupied by a 21.8 g sample of osmium?
A) 0.965
B) 493
C) 2.03×10^{-3}
D) 2.03×10^{3}
E) 1.04
29) Of the following, which gives the correct order for atomic radius for $\mathrm{Mg}, \mathrm{Na}, \mathrm{P}, \mathrm{Si}$ and Ar ?
A) $\mathrm{Ar}>\mathrm{P}>\mathrm{Si}>\mathrm{Mg}>\mathrm{Na}$
B) $\mathrm{Si}>\mathrm{P}>\mathrm{Ar}>\mathrm{Na}>\mathrm{Mg}$
C) $\mathrm{Mg}>\mathrm{Na}>\mathrm{P}>\mathrm{Si}>\mathrm{Ar}$
D) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Si}>\mathrm{P}>\mathrm{Ar}$
E) $\mathrm{Ar}>\mathrm{Si}>\mathrm{P}>\mathrm{Na}>\mathrm{Mg}$
30) In which set of elements would all members be expected to have very similar chemical properties?
28) \qquad
 \qquad
31) Based on the following information, which compound has the strongest intermolecular forces?
31)

$\Delta H_{\text {vap }}(\mathbf{k J} / \mathrm{mol})$

6.3
31.0
39.3
40.8

Methane $\left(\mathrm{CH}_{4}\right)$9.2
A) Methane
B) Ethanol
C) Water
D) Argon
E) Benzene
32) Which combination will produce a precipitate?
32) \qquad
A) $\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
B) $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HNO}_{3}(\mathrm{aq})$
C) $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ (aq)
D) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$
E) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ and $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
33) What is the electron configuration for the Co^{2+} ion?
A) $[\mathrm{Ar}] 3 \mathrm{~d}^{7}$
B) $[A r] 4 s^{1} 3 d 6$
C) $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
D) $[\mathrm{Ar}] 4 s^{2} 3 d^{9}$
E) $[\mathrm{Ne}] 3 s^{2} 3 p^{10}$
34) A compound contains $40.0 \% \mathrm{C}, 6.71 \% \mathrm{H}$, and $53.29 \% \mathrm{O}$ by mass. The molecular weight of the compound is 60.05 amu . The molecular formula of this compound is \qquad _.
A) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
B) $\mathrm{CH}_{2} \mathrm{O}$
C) CHO_{2}
D) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{4}$
E) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
35) Based on the activity series, which one of the reactions below will occur?
35) \qquad
A) $2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s})-2 \mathrm{Ag}(\mathrm{s})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
B) $\mathrm{SnCl}_{2}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Sn}(\mathrm{s})+\mathrm{CuCl}_{2}(\mathrm{aq})$
C) $3 \mathrm{FeBr}_{2}(\mathrm{aq})+2 \mathrm{Au}(\mathrm{s})-3 \mathrm{Fe}(\mathrm{s})+2 \mathrm{AuBr}_{3}(\mathrm{aq})$
D) $\mathrm{Zn}(\mathrm{s})+\mathrm{MnI}_{2}(\mathrm{aq})-\mathrm{ZnI}_{2}(\mathrm{aq})+\mathrm{Mn}(\mathrm{s})$
E) $3 \mathrm{Hg}(\mathrm{l})+2 \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \rightarrow 3 \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Cr}(\mathrm{s})$
\qquad

- Show all your work / calculations in the space provided.
- Partial credit is provided for each answer.
- Box your answer wherever possible.
- Each question is allotted 5 points.

1. According to the reaction below, how many grams of carbon dioxide can be formed when 123 g of ethane gas is reacted with 212 g of oxygen gas?
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2. Write the balanced molecular, total, and net ionic equations when aqueous solutions of sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and calcium nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed with together.
$\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow$
3. a) Calculate the energy during the electronic transition from $\mathrm{n}=5$ state to $\mathrm{n}=2$ state in a hydrogen atom.
b) Is energy absorbed or emitted during this transition?
4. Calculate the standard enthalpy of formation for acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ from the elements: 2 C (graphite) $+\mathrm{H}_{2}(\mathrm{~g})$-----------> $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$

The equations for each step and the corresponding enthalpy changes are:
a. C (graphite) $+\mathrm{O}_{2}(\mathrm{~g})-------->\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ}$
b. $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad-------->\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ}$
c. $2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})-------->4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-2598.8 \mathrm{~kJ}$
5. Consider the species, $\left(\mathrm{AlH}_{4}\right)^{-1}$

Predict the following for the above species:
a) Lewis dot structure
b) Molecular shape (or molecular geometry)
c) Hybridization about the central atom
d) Polarity
6. A tank contains a mixture of 52.5 g of oxygen gas and 65.1 g of carbon dioxide gas at $27^{\circ} \mathrm{C}$. The total volume of the tank is 23.5 L . Calculate the a) partial pressure of each gas in the tank b) the total pressure in the container.

