

HOUSTON COMMUNITY COLLEGE SYSTEM DEPARTMENTAL FINAL EXAM

CHEM 1311- SPRING 2019

VERSION A

CHEM 1311 FINAL EXAM (SPRING 2019)

Part I

There are 35 questions in this section. Each question carries 2 points. Choose the best answer and mark your answer on the scantron.

1) The molecular weight of a gas that has a density of 7.10 g/L at 25.0 °C and 1.00 atm pressure is				1)		
g/mol.						
A) 174)					
B) 5.75 x 10 ⁻³)					
C) 14.6)					
D) 6.85 × 10 ⁻² E) 28.0	=					
L) 20.0						
2) Which of the fol	lowing are combination	on reactions?			2)	
	$(g) \rightarrow CO_2(g) + H_2O(g)$					
2) CaO (s) + CO	$_2(g) \rightarrow CaCO_3(s)$					
3) Mg (s) + O_2 (g	g) → MgO (s)					
4) PbCO ₃ (s) → P	PbO (s) + CO ₂ (g)					
A) 2 and 3	0.					
B) 1, 2, and 3						
C) 2, 3, and 4						
D) 4 only						
E) 1, 2, 3, and	14					
3) The reaction					3)	
4Al (s)	+ 3O ₂ (g) → 2 Al ₂ O ₃ (s	$\Delta H^{\circ} = -$	-3351 kJ			
is , and	I therefore heat is	by the reaction				
A) exothermi						
B) endotherm						
C) exothermi						
D) endotherm						
E) thermonet	atral, neither released	nor absorbed				
4) There are	σ bonds and	π bonds in H ₃ C	C-CH2-CH=CH-CH	[2-C≡CH.	4)	
A) 12, 2	B) 16, 3	C) 14, 2	D) 10, 3	E) 13, 2		
_	t of liquid bromine is	_	_		5)	
-	10.0 mL of bromine fro	om 25.00 °C to 27.30	°C? The density of lic	quid bromine: 3.12		
g/mL.	R) 14 7 I	C) 300 J	D) 5.20 J	E) 10 4 I		
A) 32.4 J	B) 16.2 J	C) 300 J	D) 3.20 J	E) 10.4 J		

	_	is the largest m	nass.		6)
A) 2	-				
	.5 × 10 ⁹ fg				
	.5 × 10 ¹⁰ ng				
	$.5 \times 10^{-2} \text{ mg}$				
E) 2	.5 × 10 ¹⁵ pg				
7) Given	the data in the	e table below, ΔH° _{rxn}	for the reaction		7)
	4NH3 (g) + 3	5O ₂ (g) → 4NO (g) + 61	H ₂ O (l)		
is	kJ.				
	Substance	ΔH° _f (kJ/mol)			
	H ₂ O (l)	-286			
	NO (g)	90			
	$NO_2(g)$	34			
	HNO ₃ (aq)	-207			
	NH ₃ (g)	-46			
		1			
A) -					
B) - C) -					
D) -					
,		g (g) is needed for the	calculation.		
0) 1471s; als	of the follows:	na substanas is boina	reduced in the following rea	ation ?	0)
o) which	of the followi	ng substance is being	reduced in the following rea	ction.?	8)
Cu (s)	+ 2AgNO3 (a	$qq \rightarrow 2Ag(s) + Cu(1)$	NO3)2 (aq)		
A) A	agNO3	B) Cu	C) Ag	D) Cu(NO3)2	
		es of CH ₄ are in 48.2 g	g of this compound?		9)
	.00 × 10 ²³				
	$.00 \times 10^{-24}$				
	.81 × 10 ²⁴				
D) 4					
E) 4	.64 × 10 ²⁶				

atom? (arranged as n, l, m_l , and m_S)

C) 3, 2, 0, 0

D) 3, 3, 3, -1/2

E) 3, 4, 6, -1/2

10) Which one of the following represents an acceptable set of quantum numbers for an electron in an

10) _____

11) Which of the following does <u>not</u> have eight valence electrons?

11) _____

- A) Xe
- B) Br-
- C) Ca+
- D) Rb+

E) All of the above have eight valence electrons.

12) Which combination of protons, neutrons, and electrons is correct for the isotope of copper, $\frac{63}{29}$ Cu?

³₉Cu? 12) _____

- A) 29 p+, 29 n°, 63 e-
- B) 34 p+, 29 n°, 34 e-
- C) 29 p+, 34 n°, 29 e-
- D) 63 p+, 29 n°, 63 e-
- E) 34 p+, 34 n°, 29 e-

13) Which species has London dispersion forces as the <u>only</u> intermolecular force?

13)

- A) CH₃OH
- B) HI
- C) CH₃CH₃
- D) KBr

E) CH₃F

14) When the following equation is balanced, the coefficient of Al is _____.

14)

$$Al(s) + H_2O(l) - Al(OH)_3(s) + H_2(g)$$

- A) 4
- B) 1
- C) 5
- D) 3
- E) 2

15) The combustion of propane (C₃H₈) in the presence of excess oxygen yields CO₂ and H₂O:

15) _____

$$C_3H_8(g) + 5O_2(g) - 3CO_2(g) + 4H_2O(g)$$

When 2.5 mol of O₂ are consumed in their reaction, _____ mol of CO₂ are produced.

- A) 3.0
- B) 7.5
- C) 1.5
- D) 4.2
- E) 2.5

16) The formal charge on nitrogen in NO₃⁻ is _____, where the Lewis structure of the ion is:

16) _____

- A) -1
- B) +2
- C) +1
- D) 0
- E) -2

17) Of the following, A) $V = \text{constant}$		tatement of Charles'	law.		17)
B) $\frac{P}{T}$ = constant	t				
C) $V = \text{constant}$	× n				
D) $\frac{V}{T}$ = constant	t				
E) $PV = \text{constant}$	nt				
18) The formula weig	tht of calcium nitrate	e (Ca(NO3)2), rounde	d to one decimal pla	ce, is amu.	18)
A) 102.1	B) 116.1	C) 150.1	D) 204.2	E) 164.0	
19) The Lewis structu	-		rus atom has	nonbonding and	19)
A) 1, 2	g electron pair(s). B) 1, 3	C) 3, 1	D) 2, 2	E) 3, 3	
20) Which pair of eler		pect to exhibit the gre	eatest similarity in th	eir physical and	20)
A) Ga, Ge	B) H, Li	C) Ca, Sr	D) C, O	E) Cs, Ba	
21) The number 0.010	01 has sign	ificant figures.			21)
A) 5	B) 6	C) 2	D) 4	E) 3	
22) In ionic bond form	nation, the lattice en	ergy of ions	as the magnitude o	f the ion charges	22)
	radii				
	crease, increase				
·	ecrease, increase ecrease, decrease				
·	ncrease, increase				
•	crease, decrease				
23) A sample of a gas	originally at 29 °C a	and 1.25 atm pressure	in a 3.0 L container	is allowed to	23)
contract until the atm.	volume is 2.2 L and	the temperature is 11	°C. The final pressu	re of the gas is	
A) 2.8	B) 2.1	C) 0.38	D) 1.6	E) 2.9	
24) Which equation c	orrectly represents t	he <u>first</u> ionization of o	calcium?		24)
A) Ca⁻ (g) → Ca	ı (g) + e ⁻				
B) Ca+ (g) + e-	→ Ca (g)				
C) Ca (g) → Ca-	(g) + e ⁻				
D) Ca (g) + e ⁻ -	· Ca- (g)				
E) Ca (g) → Ca+					

25	Which	formula	/name	pair i	s incor	rect?
20	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IOIIIIuia	/ Hanne	pan i	3 111001	ICCL

- A) FeSO₃ iron(II) sulfite
- B) Fe₂(SO₄)₃
- C) Fe₂(SO₃)₃
- iron(III) sulfide iron(III) sulfite
- D) FeSO₄
- iron(II) sulfate
- E) FeS
- iron(II) sulfide
- 26) What is the concentration (M) of a NaCl solution prepared by dissolving 9.3 g of NaCl in sufficient water to give 350 mL of solution?
- 26) _____

25) ____

- A) 0.45
- B) 2.7×10^{-2}
- C) 0.16
- D) 18
- E) 27
- 27) The element X has two naturally occurring isotopes. The masses (amu) and % abundances of the isot 27) are given in the table below. The average atomic mass of the element is _____ amu.

Isotope	Abundance (%)	Mass (amu)
31 _X	35.16	31.16
34χ	64.84	34.30

- A) 30.20
- B) 33.20
- C) 32.73
- D) 35.22
- E) 34.02
- 28) Osmium has a density of 22.6 g/cm³. What volume (in cm³) would be occupied by a 21.8 g sample of osmium?
- 28) ____

- A) 0.965
- B) 493
- C) 2.03×10^{-3}
- D) 2.03×10^3
- E) 1.04
- 29) Of the following, which gives the correct order for atomic radius for Mg, Na, P, Si and Ar?
- 29) _____

- A) Ar > P > Si > Mg > Na
- B) Si > P > Ar > Na > Mg
- C) Mg > Na > P > Si > Ar
- D) Na > Mg > Si > P > Ar
- E) Ar > Si > P > Na > Mg
- 30) In which set of elements would all members be expected to have very similar chemical properties?
- 30) ___

- A) Si, As, Te
- B) Br, I, At
- C) Cl, Br, Na
- D) Ne, Na, Mg
- E) P, Se, I

31) Based on the follow	ring information, w	vhich compound has th	ne strongest intermo	lecular forces?	31)
Substan	ice	ΔH _{vap} (kJ/mol)			
Argon (Ar)		6.3			
Benzene (C		31.0			
Ethanol (C	2H5OH)	39.3			
Water (H ₂ 0	O)	40.8			
Methane (C	CH ₄)	9.2			
A) Methane	B) Ethanol	C) Water	D) Argon	E) Benzene	
32) Which combination	will produce a pr	ecipitate?			32)
A) $AgC_2H_3O_2$ (a	aq) and HC $_2$ H $_3$ O $_2$	(aq)			
B) KOH (aq) and					
C) NaOH (aq) ar	1000000000000000000000000000000000000				
D) Pb(NO ₃) ₂ (aq) and HCl (aq)				
E) Cu(NO ₃) ₂ (ac	$_{ m I})$ and KC $_{ m 2}$ H $_{ m 3}$ O $_{ m 2}$ (a	aq)			
33) What is the electron	n configuration for	the Co^{2+} ion?			33)
A) [Ar]3d ⁷	Ü				
B) [Ar]4s ¹ 3d ⁶					
C) [Ar]3d ⁵					
D) $[Ar]4s^23d^9$					
E) [Ne]3s ² 3p ¹⁰					
34) A compound conta	ins 40.0% C, 6.71%	H, and 53.29% O by m	ass. The molecular	weight of the	34)
-		ar formula of this comp			
A) C ₂ H ₄ O ₂	B) CH ₂ O	C) CHO ₂	D) C ₂ H ₃ O ₄	E) C ₂ H ₂ O ₄	
35) Based on the activit	y series, which one	e of the reactions below	will occur?		35)
A) 2AgNO ₃ (aq)	+ Pb (s) \rightarrow 2Ag (s) \cdot	+ Pb(NO ₃) ₂ (aq)			
$\mathbf{p}_{\mathbf{k}}$ $\mathbf{c}_{\mathbf{k}}$ $\mathbf{c}_{\mathbf{k}}$	C (a) C (a) C	C1 ()			

- B) $SnCl_2(aq) + Cu(s) Sn(s) + CuCl_2(aq)$
- C) 3FeBr_2 (aq) + 2Au (s) $\rightarrow 3\text{Fe}$ (s) + 2AuBr_3 (aq)
- D) $Zn(s) + MnI_2(aq) ZnI_2(aq) + Mn(s)$
- E) $3Hg(1) + 2Cr(NO_3)_3(aq) 3Hg(NO_3)_2 + 2Cr(s)$

Part	TT
1 al ı	11

Name

- Show all your work / calculations in the space provided.
- Partial credit is provided for each answer.
- Box your answer wherever possible.
- Each question is allotted 5 points.
- 1. According to the reaction below, how many grams of carbon dioxide can be formed when 123 g of ethane gas is reacted with 212 g of oxygen gas?

$$2\;C_2H_6(g)\;+\;7\;O_2\;(g)\;\to\;\;4\;CO_2\,(g)\;+\;6\;H_2O\;(g)$$

2. Write the balanced molecular, total, and net ionic equations when aqueous solutions of sodium phosphate, Na_3PO_4 and calcium nitrate, $Ca(NO_3)_2$ are mixed with together.

$$Na_3PO_4$$
 $(aq) + Ca(NO_3)_2$

- 3. a) Calculate the energy during the electronic transition from n=5 state to n=2 state in a hydrogen atom.
- b) Is energy absorbed or emitted during this transition?

4. Calculate the standard enthalpy of formation for acetylene (C_2H_2) from the elements: 2C (graphite) + H_2 (g) -----> C_2H_2 (g)

The equations for each step and the corresponding enthalpy changes are:

a. C (graphite) +
$$O_2$$
 (g) -----> CO_2 (g) $\Delta H^{\circ} = -393.5 \text{ kJ}$

b.
$$H_2(g) + 1/2 O_2(g)$$
 -----> $H_2O(l)$ $\Delta H^{\circ} = -285.8 \text{ kJ}$

c.
$$2C_2H_2(g) + 5O_2(g) ----> 4CO_2(g) + 2H_2O(l) \Delta H^\circ = -2598.8 \text{ kJ}$$

5. Consider the species, (AlH ₄) ⁻¹
Predict the following for the above species:
a) Lewis dot structure
b) Molecular shape (or molecular geometry)
c) Hybridization about the central atom
d) Polarity
6. A tank contains a mixture of 52.5g of oxygen gas and 65.1g of carbon dioxide gas at 27°C. The total volume of the tank is 23.5 L. Calculate the a) partial pressure of each gas in the tank b) the total pressure in the container.