

HOUSTON COMMUNITY COLLEGE SYSTEM

DEPARTMENTAL FINAL EXAM

CHEM 1311- SPRING 2019

VERSION D

CHEM 1311 FINAL EXAM (SPRING 2019)

Part I

There are 35 questions in this section. Each question carries 2 points. Choose the best answer and mark your answer on the scantron.

A) Ag	B) AgNO3	C)	Cu	D) Cu(NO3)2	
2) The combustion	of propane (C3H8) in th	e presence of exc	cess oxygen yields C	O2 and H2O:	2)
	;) + 5O ₂ (g) → 3CO ₂ (g) +	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,
		,	mal of COs are	produced	
A) 1.5	O ₂ are consumed in the B) 3.0	C) 4.2	mor or CO ₂ are D) 7.5	E) 2.5	
3) The reaction					3)
5) The reaction					3)
4Al (s) +	$-3O_2(g) - 2Al_2O_3(s)$	$\Delta H^{\circ} =$	-3351 kJ		
A) exothermic B) endotherm C) endotherm D) exothermic	ic, absorbed ic, released	·			
	s originally at 29 °C and	1 25 atm process	ro in a 301 containe	er is allowed to	4)
contract until the	e volume is 2.2 L and the				/
4) A sample of a ga contract until the atm. A) 2.1					,

E) 4, 3, 0, 0

- 6) The element X has two naturally occurring isotopes. The masses (amu) and % abundances of the iso 6) _____ are given in the table below. The average atomic mass of the element is _____ amu. Isotope Abundance (%) Mass (amu) 31χ 35.16 31.16 34χ 64.84 34.30 A) 34.02 B) 30.20 D) 32.73 E) 35.22 C) 33.20 7) The specific heat of liquid bromine is 0.226 J/g-K. How much heat (J) is required to raise the 7) temperature of 10.0 mL of bromine from 25.00 °C to 27.30 °C? The density of liquid bromine: 3.12 g/mL. A) 32.4 J B) 10.4 J C) 300 J D) 16.2 J E) 5.20 J 8) Which pair of elements would you expect to exhibit the greatest similarity in their physical and 8) chemical properties? A) H, Li B) Cs, Ba C) C, O D) Ga, Ge E) Ca, Sr 9) Of the following, which gives the correct order for atomic radius for Mg, Na, P, Si and Ar? 9) A) Ar > P > Si > Mg > NaB) Si > P > Ar > Na > MgC) Mg > Na > P > Si > Ar D) Ar > Si > P > Na > MgE) Na > Mg > Si > P > Ar 10) The formal charge on nitrogen in NO₃⁻ is _____, where the Lewis structure of the ion is: 10) _____ A) 0 B) -1 C) +1 D) -2 E) +2 11) _____ 11) Based on the activity series, which one of the reactions below will occur? A) 3Hg (l) + 2Cr(NO₃)₃ (aq) → 3Hg(NO₃)₂ + 2Cr (s) B) $2AgNO_3(aq) + Pb(s) \rightarrow 2Ag(s) + Pb(NO_3)_2(aq)$ C) $3FeBr_2(aq) + 2Au(s) \rightarrow 3Fe(s) + 2AuBr_3(aq)$
 - D) $Zn(s) + MnI_2(aq) \rightarrow ZnI_2(aq) + Mn(s)$
 - E) SnCl₂ (aq) + Cu (s) \neg Sn (s) + CuCl₂ (aq)

12) Which combination will produce a precipitate? A) Pb(NO3)2 (aq) and HCl (aq)					
	aq) and KC ₂ H ₃ O ₂ ((aq)			
	and $Sr(NO_3)_2$ (aq)				
D) KOH (aq) at					
, . .	(aq) and HC ₂ H ₃ O ₂	2 (ag)			
, 02 5 2					
13) Which formula/n	ame pair is incorrec	t?			13)
A) FeS	iron(II) sulfide	_			, <u> </u>
B) FeSO ₃	iron(II) sulfite				
C) Fe ₂ (SO ₄) ₃	iron(III) sulfide				
D) FeSO ₄	iron(II) sulfate				
E) Fe ₂ (SO ₃) ₃	iron(III) sulfite				
14) In ionic bond forr	nation, the lattice er	nergy of ions	_ as the magnitude of th	ne ion charges	14)
	radii				
	ecrease, increase				
-	crease, increase				
-	ecrease, decrease				
	ncrease, increase Icrease, decrease				
E) mereases, n	lerease, decrease				
15) Which equation c	orrectly represents	the first ionization of	calcium?		15)
-		the <u>first</u> ionization of	calcium?		15)
A) Ca (g) + e ⁻ -	→ Ca⁻ (g)	the <u>first</u> ionization of	calcium?		15)
A) Ca (g) + e ⁻ - B) Ca+ (g) + e ⁻	→ Ca ⁻ (g) → Ca (g)	the <u>first</u> ionization of	calcium?		15)
A) Ca (g) + e^- B) Ca ⁺ (g) + e^- C) Ca (g) \rightarrow Ca ⁺	- Ca ⁻ (g) - Ca (g) - (g) + e ⁻	the <u>first</u> ionization of	calcium?		15)
A) Ca (g) + e ⁻ B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca	→ $Ca^-(g)$ → $Ca(g)$ – $(g) + e^-$ $a(g) + e^-$	the <u>first</u> ionization of	calcium?		15)
A) Ca (g) + e^- B) Ca ⁺ (g) + e^- C) Ca (g) \rightarrow Ca ⁺	→ $Ca^-(g)$ → $Ca(g)$ – $(g) + e^-$ $a(g) + e^-$	the <u>first</u> ionization of	calcium?		15)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ E) Ca (g) \rightarrow Ca ⁻	$ - Ca^{-}(g) - Ca(g) - (g) + e^{-} - $				
A) Ca (g) + e ⁻ B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ E) Ca (g) \rightarrow Ca ⁻ 16) Which species has	$ - Ca^{-}(g) - Ca(g) - (g) + e^{-} - (g) + e^{-} - (g) + e^{-} - s London dispersion$	n forces as the <u>only</u> in	termolecular force?	E) CH3CH3	15)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ E) Ca (g) \rightarrow Ca ⁻	$ - Ca^{-}(g) - Ca(g) - (g) + e^{-} - (g) - (g) - (g) - (g) - (g) - (g) $			E) CH3CH3	
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁻ E) Ca (g) \rightarrow Ca ⁻ 16) Which species hat A) CH ₃ F	- Ca ⁻ (g) - Ca (g) - (g) + e ⁻ a (g) + e ⁻ - (g) + e ⁻ - (g) + e ⁻ - (g) + e ⁻ - B) HI	n forces as the <u>only</u> in C) KBr	termolecular force?	E) CH3CH3	
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁻ E) Ca (g) \rightarrow Ca ⁻ 16) Which species has A) CH ₃ F	- Ca ⁻ (g) - Ca (g) - (g) + e ⁻ a (g) + e ⁻ - (g) + e ⁻ s London dispersion B) HI by HI	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	E) CH3CH3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ E) Ca (g) \rightarrow Ca ⁻ 16) Which species hat A) CH ₃ F	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → London dispersion B) HI wing are combination g) → CO ₂ (g) + H ₂ O	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	E) CH3CH3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) - Ca ⁺ D) Ca ⁻ (g) - Ca ⁻ E) Ca (g) - Ca ⁻ 16) Which species has A) CH ₃ F 17) Which of the follo 1) CH ₄ (g) + O ₂ (g 2) CaO (s) + CO ₂	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → London dispersion B) HI → HI → CO ₂ (g) + H ₂ O (g) → CO ₂ (g) + H ₂ O	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	E) CH3CH3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ E) Ca (g) \rightarrow Ca ⁻ 16) Which species hat A) CH ₃ F 17) Which of the follo 1) CH ₄ (g) + O ₂ (g 2) CaO (s) + CO ₂ 3) Mg (s) + O ₂ (g)	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ = London dispersion B) HI wing are combinate g) → CO ₂ (g) + H ₂ O (g) → CaCO ₃ (s) → MgO (s)	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	E) CH3CH3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ E) Ca (g) \rightarrow Ca ⁻ 16) Which species has A) CH ₃ F 17) Which of the follo 1) CH ₄ (g) + O ₂ (g 2) CaO (s) + CO ₂ 3) Mg (s) + O ₂ (g) 4) PbCO ₃ (s) \rightarrow Pb	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ = London dispersion B) HI wing are combinate g) → CO ₂ (g) + H ₂ O (g) → CaCO ₃ (s) → MgO (s)	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	E) CH3CH3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁻ E) Ca (g) \rightarrow Ca ⁻ 16) Which species has A) CH ₃ F 17) Which of the follor 1) CH ₄ (g) + O ₂ (g 2) CaO (s) + CO ₂ 3) Mg (s) + O ₂ (g) 4) PbCO ₃ (s) \rightarrow Pb A) 4 only	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → S London dispersion B) HI → HI → CO ₂ (g) + H ₂ O (g) → CaCO ₃ (s) → MgO (s) O (s) + CO ₂ (g)	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	Е) СН3СН3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁻ E) Ca (g) \rightarrow Ca ⁻ 16) Which species hat A) CH ₃ F 17) Which of the follor 1) CH ₄ (g) + O ₂ (g) 2) CaO (s) + CO ₂ 3) Mg (s) + O ₂ (g) 4) PbCO ₃ (s) \rightarrow Pb A) 4 only B) 1, 2, 3, and 4	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → S London dispersion B) HI → HI → CO ₂ (g) + H ₂ O (g) → CaCO ₃ (s) → MgO (s) O (s) + CO ₂ (g)	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	E) CH3CH3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) - Ca ⁺ D) Ca ⁻ (g) - Ca ⁺ D) Ca ⁻ (g) - Ca ⁻ E) Ca (g) - Ca ⁻ 16) Which species hat A) CH ₃ F 17) Which of the follor 1) CH ₄ (g) + O ₂ (g) 2) CaO (s) + CO ₂ 3) Mg (s) + O ₂ (g) 4) PbCO ₃ (s) - Pb A) 4 only B) 1, 2, 3, and 4 C) 1, 2, and 3	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → S London dispersion B) HI → HI → CO ₂ (g) + H ₂ O (g) → CaCO ₃ (s) → MgO (s) O (s) + CO ₂ (g)	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	E) CH3CH3	16)
A) Ca (g) + e ⁻ - B) Ca ⁺ (g) + e ⁻ C) Ca (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁺ D) Ca ⁻ (g) \rightarrow Ca ⁻ E) Ca (g) \rightarrow Ca ⁻ 16) Which species hat A) CH ₃ F 17) Which of the follor 1) CH ₄ (g) + O ₂ (g) 2) CaO (s) + CO ₂ 3) Mg (s) + O ₂ (g) 4) PbCO ₃ (s) \rightarrow Pb A) 4 only B) 1, 2, 3, and 4	→ Ca ⁻ (g) → Ca (g) → Ca (g) → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → (g) + e ⁻ → S London dispersion B) HI → HI → CO ₂ (g) + H ₂ O (g) → CaCO ₃ (s) → MgO (s) O (s) + CO ₂ (g)	n forces as the <u>only</u> int C) KBr ion reactions?	termolecular force?	Е) СН3СН3	16)

18) Based on the following information, which compound has the strongest intermolecular forces?

18) _____

	-	-	-		
Substance	e	ΔH _{vap} (kJ/mol)			
Argon (Ar)		6.3			
Benzene (C_6H_6)		31.0			
Ethanol (C ₂ I	H5OH)	39.3			
Water (H ₂ O)		40.8			
Methane (CH ₄)		9.2			
A) Benzene	B) Water	C) Methane	D) Argon	E) Ethanol	
19) When the following e		19)			
Al (s) + H ₂ O	(l) → Al(OH) ₃ (s) ·	+ H ₂ (g)			
A) 4	B) 2	C) 5	D) 1	E) 3	
20) Given the data in the	table below, ΔH°	rxn for the reaction			20)
4NH3 (g) + 5	5O ₂ (g) → 4NO (g)	+ 6H2O (l)			
	2 (0)	_ (/			
is kJ.					
Substance	ΔH°_{f} (kJ/mol)				
H ₂ O (l)	-286				
NO (g)	90				
NO ₂ (g)	34				
HNO ₃ (aq)	-207				
NH3 (g)	-46				
A) –150					
B) –1892					
C) -1540					
D) –1172					
E) The ΔH°_{f} of O_{2}	(g) is needed for	the calculation.			
21) The molecular weigh g/mol.	t of a gas that has	a density of 7.10 g/L a	t 25.0 °C and 1.00 at	tm pressure is	21)
A) 6.85 × 10 ⁻²					
B) 174					
C) 28.0					
D) 14.6					
E) 5.75 × 10 ^{−3}					
22) The Lewis structure of	of PF3 shows that	the central phosphoru	s atom has	_nonbonding and	22)
, bonding ele	-	* *		U	
A) 2, 2	B) 1, 2	C) 3, 1	D) 1, 3	E) 3, 3	

23) Osmium has a de of osmium? A) 1.04 B) 2.03 × 10 ³ C) 0.965 D) 2.03 × 10 ⁻³ E) 493	nsity of 22.6 g/cm ³ . W	/hat volume (in cm ³)	would be occupied b	y a 21.8 g sample	23)
24) In which set of ele A) Ne, Na, Mg B) P, Se, I C) Br, I, At D) Cl, Br, Na E) Si, As, Te	ements would all men	nbers be expected to h	nave very similar che	mical properties?	24)
	tains 40.0% C, 6.71% H	•		veight of the	25)
compound is 60.0 A) CHO ₂	5 amu. The molecular B) C ₂ H ₃ O ₄	-	D) C ₂ H ₂ O ₄	E) CH ₂ O	
26) What is the conce water to give 350	ntration (M) of a NaC mL of solution?	l solution prepared b	y dissolving 9.3 g of I	NaCl in sufficient	26)
A) 27	B) 0.16	C) 0.45	D) 18	E) 2.7 × 10 ⁻²	
27) The formula weig	tht of calcium nitrate (Ca(NO3)2), rounded	to one decimal place	, is amu.	27)
A) 204.2	B) 116.1	C) 150.1	D) 102.1	E) 164.0	,
28) Which combination	on of protons, neutron	s, and electrons is co	rrect for the isotope o	f copper, ⁶³ / ₂₉ Cu?	28)
A) 29 p+, 34 n°,	29 e-				
B) 34 p+, 34 n°,					
C) 63 p+, 29 n°,	63 e-				
D) 34 p+, 29 n°,					
E) 29 p+, 29 n°,	63 e−				
29) How many molec	cules of CH4 are in 48.	2 g of this compound	!?		29)
A) 1.81×10^{24}					
B) 5.00 × 10−24					
C) 4.00					
D) 2.00 × 10 ²³ E) 4.64 × 10 ²⁶					
E) 4.64 × 1020					
30) There are	_ σ bonds and	$_{}\pi$ bonds in H ₃ C-0	CH2-CH=CH-CH2-	·C≡CH.	30)
A) 14, 2	B) 12, 2	C) 10, 3	D) 13, 2	E) 16, 3	

31) Of the following, A) $V = \text{constant} \times n$ B) $\frac{P}{T} = \text{constant}$	31)				
C) $\frac{V}{T}$ = constant					
D) $V = \text{constant} \star P$ E) $PV = \text{constant}$					
32) The number 0.0001000) has sign	nificant figures.			32)
A) 4	B) 5	C) 2	D) 6	E) 3	
33) Of the following,	is the largest 1	mass.			33)
A) 25 kg B) 2.5 × 10 ^{−2} mg					
C) 2.5×10^{-110} pg					
D) 2.5×10^9 fg					
E) 2.5×10^{10} ng					
34) Which of the following	g does <u>not</u> have eig	tht valence electrons	5?		34)
A) Rb+					
B) Ca+					
C) Xe					
D) Br-					
E) All of the above l	have eight valence	electrons.			
35) What is the electron co	onfiguration for the	$2 \operatorname{Co}^{2+}$ ion?			35)
A) [Ar]3d ⁷					
B) [Ar]4s ² 3d ⁹					
C) [Ne]3s ² 3p ¹⁰					
D) [Ar]3d ⁵					

E) [Ar]4s¹3d⁶

Part II

Name:

- 5 points for each question
- Show your work / calculations in the space provided
- Box your answer wherever possible
- Partial credit will be given for these questions.
 - 1. How many grams of HCl are formed from the reaction of 3.56 g of H_2 with 8.94 g of Cl_2 according to the following reaction:

 $H_{2}(g) + Cl_{2}(g) ----> 2HCl(g)$

2. Write the balanced molecular, ionic, and net ionic equations for any reactions that would occur between the following pair of compounds.

Pb(NO₃)₂ (aq) + HCl (aq) ----->

3. Calculate the energy change that would accompany an electronic transition in a hydrogen atom from n = 4 to n = 2 shell. Determine whether radiation is absorbed or emitted during this transition. $(R_{H} = 2.18 \times 10^{-18} \text{ J})$

4. Given the following reactions

 $\begin{array}{l} \mbox{Fe}_2\mbox{O}_3\ (s)\ +\ 3\mbox{CO}\ (s)\ \rightarrow\ 2\mbox{Fe}\ (s)\ +\ 3\mbox{CO}_2\ (g)\ \ \Delta\mbox{H}=-28.0\ k\mbox{J}\\ \ 3\mbox{Fe}\ (s)\ +\ 4\mbox{CO}_2\ (s)\ \rightarrow\ 4\mbox{CO}\ (g)\ +\ \mbox{Fe}_3\mbox{O}_4\ (s)\ \Delta\mbox{H}=+12.5\ k\mbox{J} \end{array}$

Calculate the enthalpy of the reaction of Fe_2O_3 with CO

 $3Fe_2O_3(s) + CO(g) \rightarrow CO_2(g) + 2Fe_3O_4(s)$

- 5. Determine the following for I_3^- ion:
 - a. Lewis Structure
 - b. Hybridization of the central atom
 - c. Molecular Geometry
 - d. Polarity (Polar/Nonpolar)

- 6. SO₂ (5.00 g) and CO₂ (5.00 g) were placed in a 750.0 mL container at 50.0 °C.
 - a. Find the partial pressure of each component
 - b. Find the total pressure of the gas mixture.