## MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Which of the following properties distinguishes the standard normal distribution from other normal distributions?
- 1) \_\_\_\_\_

- A) The curve is continuous.
- B) The total area under the curve is equal to 1.00.
- C) The mean is located at the center of the distribution.
- D) The mean is 0 and the standard deviation is 1.
- 2) The area under a normal distribution curve is always positive even if the z value is negative.
- 2) \_\_\_\_\_

A) True

- B) False
- 3) Find the area under the standard normal distribution curve between z = 0 and z = 2.16.



D) 0.9846

4) What is the area under the standard normal distribution curve between z = 1.50 and z = 2.50?





- A) 0.0802
- B) 0.0606
- C) 1.00
- D) 0.0764
- 5) Find the area under the standard normal distribution curve to the left of z = 1.69.





- A) 0.4452
- B) 0.9452
- C) 0.4545
- D) 0.9545
- 6) Find the area under the standard normal curve that lies between z = -1.9 and z = 2.2.

- A) 0.0426
- B) 0.9574
- C) 0.5139
- D) 0.4861
- 7)

- 7) The probability P(0 < z < 0.97) is 0.3340.
  - A) False

B) True

8)

- 8) Find the area under the standard normal curve to the right of z = 2.
  - A) 0.9772
- B) 0.0228
- C) 0.0114
- D) 0.4772

9) Find the probability P(z > 0.78) using the standard normal distribution.

9)

- A) 0.7823
- B) 0.2823
- C) 0.7177
- D) 0.2177
- 10)
- 10) Find the probability P(z > -0.54) using the standard normal distribution.

- A) 0.7054
- B) 0.7946
- C) 0.2054
- D) 0.2946
- 11) Find the z-scores that bound the middle 74% of the area under the standard normal curve.
- 11)

- A) -1.07, 1.07
- B) -0.99, 0.99
- C) -1.24, 1.24
- D) -1.13, 1.13

| 2) The average length of crocodiles in a swamp is 11.5 feet. If the lengths are normally distributed with a standard deviation of 1.7 feet, find the probability that a crocodile is more than 11 feet long. |                                                                                     |                                  |                   | 12) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|-------------------|-----|
| A) 0.12                                                                                                                                                                                                      | B) 0.62                                                                             | C) 0.38                          | D) 0.88           |     |
|                                                                                                                                                                                                              | on has a mean $\mu = 33$ an andomly chosen value v                                  |                                  |                   | 13) |
| A) 0.8888                                                                                                                                                                                                    | B) 0.8554                                                                           | C) 0.1112                        | D) 0.6915         |     |
| (mL) and standard                                                                                                                                                                                            | ng water fills plastic both<br>deviation 5 mL. The filles have volumes betwee       | l volumes are normally           | distributed. What | 14) |
| A) 0.3399                                                                                                                                                                                                    | B) 0.0808                                                                           | C) 0.4207                        | D) 0.6452         |     |
| (mL) and standard                                                                                                                                                                                            | ng water fills plastic both<br>deviation 6 mL. The fill<br>es have volumes less tha | l volumes are normally           |                   | 15) |
| A) 0.5438                                                                                                                                                                                                    | B) 1.0000                                                                           | C) 0.9772                        | D) 0.5000         |     |
| (mL) and standard                                                                                                                                                                                            | ng water fills plastic both<br>deviation 7 mL. The fill<br>es have volumes less tha | l volumes are normally           |                   | 16) |
| A) 0.9997                                                                                                                                                                                                    | B) 0.3336                                                                           | C) 0.6293                        | D) 1.0000         |     |
| (mL) and standard                                                                                                                                                                                            | ng water fills plastic both<br>deviation 4 mL. The fill<br>es have volumes less tha | l volumes are normally           |                   | 17) |
| A) 0.9970                                                                                                                                                                                                    | B) 0.7734                                                                           | C) 1.0000                        | D) 0.8186         |     |
|                                                                                                                                                                                                              | 5 will be drawn from a p                                                            |                                  |                   | 18) |
| A) 0.8040                                                                                                                                                                                                    | the probability that $x$ wi<br>B) 0.0537                                            | C) 0.1423                        | 5.<br>D) 0.7465   |     |
| 19) A sample of size 52 will be drawn from a population with mean 18 and standard                                                                                                                            |                                                                                     |                                  |                   | 19) |
| deviation 13. Find<br>A) 0.0485                                                                                                                                                                              | the probability that $x$ wi<br>B) 0.9633                                            | ll be less than 21.<br>C) 0.9382 | D) 0.9515         |     |
|                                                                                                                                                                                                              | a Boy Scout troop, 15% elected at random, find                                      |                                  |                   | 20) |
| A) 31.3%                                                                                                                                                                                                     | B) 81.3%                                                                            | C) 36.6%                         | D) 86.6%          |     |

| 21) A biologist estimates that 70% of the deer in a region carry a certain type of tick. For a sample of 300 deer selected at random, what is the chance that 216 or fewer deer have this tick? |                                    |                                                                                                        |                                 | 21) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|-----|
| A) 0.588                                                                                                                                                                                        | B) 0.864                           | C) 0.794                                                                                               | D) 0.206                        |     |
| 22) Find the level of the co<br>2.16                                                                                                                                                            | onfidence interval that            | has the given critical va                                                                              | alue.                           | 22) |
| A) 1.54%                                                                                                                                                                                        | B) 98.46%                          | C) 96.92%                                                                                              | D) 3.08%                        |     |
| population of millionai<br>age of all United States                                                                                                                                             | illionaires was 54.8 years, find t | ears. If the standard development he 95% confidence inte                                               | viation of the entire           | 23) |
| A) $52.8 < \mu < 56.8$<br>C) $54.0 < \mu < 55.6$                                                                                                                                                |                                    | B) $53.3 < \mu < 56.3$<br>D) $53.5 < \mu < 56.1$                                                       |                                 |     |
| 24) A study of 65 bolts of 6 standard deviation of the confidence interval for A) $73.3 < \mu < 75.1$ C) $73.2 < \mu < 75.2$                                                                    | he population is 3.6 ya            | ards. Which of the follo                                                                               | _                               | 24) |
| 25) A population has a star<br>that a 99% confidence<br>A) 118                                                                                                                                  |                                    | e.8. How large a sample e a margin of error equa                                                       |                                 | 25) |
| 26) A sample of size $n = 2$                                                                                                                                                                    |                                    |                                                                                                        | e critical value $t_{\alpha/2}$ | 26) |
| needed to construct a 9<br>A) 1.725                                                                                                                                                             | 90% confidence interv<br>B) 1.645  | al.<br>C) 1.721                                                                                        | D) 1.325                        |     |
| 27) A sample of size $n = 1$ :<br>s = 2.4. Construct a 95<br>A) $14.3 < \mu < 16.9$<br>C) $15.1 < \mu < 16.1$                                                                                   |                                    | c = 15.6 and sample stan<br>for the population mea<br>B) 14.6 < $\mu$ < 16.6<br>D) 14.0 < $\mu$ < 17.2 |                                 | 27) |
| 28) 7 squirrels were found deviation is 1.1. Find the A) $8.3 < \mu < 9.1$ C) $7.7 < \mu < 9.7$                                                                                                 |                                    | eight of 8.7 ounces with<br>terval of the true mean v<br>B) $6.0 < \mu < 11.4$<br>D) $7.9 < \mu < 9.5$ |                                 | 28) |

|      | 29) In a study of 100 new c new cars that are white.                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d $\stackrel{\wedge}{p}$ and $\stackrel{\wedge}{q}$ , where $\stackrel{\wedge}{p}$ is the proportion of                                                                                                                                                   | 29)          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|      | A) $\stackrel{\wedge}{p} = 0.29$ , $\stackrel{\wedge}{q} = 0$ .                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B) $\stackrel{\wedge}{p} = 0.71, \stackrel{\wedge}{q} = 0.71$                                                                                                                                                                                             |              |
|      | C) $p = 0.29, q = 0.$                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) $p = 0.71, q = 0.71$<br>D) $p = 0.29, q = 0.29$                                                                                                                                                                                                        |              |
|      | C) $p = 0.71, q = 0.$                                                                                                                                                                                                                                                                                     | .29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D) $p = 0.29, q = 0.29$                                                                                                                                                                                                                                   |              |
|      | 30) In a survey of 305 regis                                                                                                                                                                                                                                                                              | stered voters, 130 of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nem wished to see Mayor Waffleskate lose                                                                                                                                                                                                                  | 30)          |
|      | her next election. Const                                                                                                                                                                                                                                                                                  | truct a 95% confidenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e interval for the proportion of registered                                                                                                                                                                                                               | , <u></u>    |
|      | voter who want to see N                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |              |
|      | A) 0.380 C) 0.371 < p < 0.482                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B) 0.398 D) 0.317 < p < 0.535                                                                                                                                                                                                                             |              |
|      | $C_j 0.571 \cdot p \cdot 0.402$                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D) 0.517 $P$ $< 0.555$                                                                                                                                                                                                                                    |              |
|      | 31) A recent poll of 700 peo                                                                                                                                                                                                                                                                              | ople who work indoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rs found that 278 smoke. If the researchers                                                                                                                                                                                                               | 31)          |
|      |                                                                                                                                                                                                                                                                                                           | ent of their results to w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vithin 3.5 percentage points, how large a                                                                                                                                                                                                                 |              |
|      | sample is necessary?                                                                                                                                                                                                                                                                                      | D) 1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C) 522 D) 22                                                                                                                                                                                                                                              |              |
|      | A) 751                                                                                                                                                                                                                                                                                                    | B) 1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C) 532 D) 33                                                                                                                                                                                                                                              |              |
|      | 32) A chi-square distributio                                                                                                                                                                                                                                                                              | on is negatively skewe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d                                                                                                                                                                                                                                                         | 32)          |
|      | A) False                                                                                                                                                                                                                                                                                                  | in is negatively shelve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B) True                                                                                                                                                                                                                                                   | <i></i>      |
|      | ORT ANSWER. Write the wastion.                                                                                                                                                                                                                                                                            | vord or phrase that b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | est completes each statement or answers                                                                                                                                                                                                                   | the          |
|      |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                           | the          |
| que: | <b>stion.</b> 33) The area under each ch                                                                                                                                                                                                                                                                  | i-square distribution is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                           |              |
| que: | stion.  33) The area under each ch  LTIPLE CHOICE. Choose stion.                                                                                                                                                                                                                                          | i-square distribution is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s equal to 33) _                                                                                                                                                                                                                                          |              |
| que: | stion.  33) The area under each characteristics.  LTIPLE CHOICE. Choose stion.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$                                                                                                                                                               | i-square distribution is  the one alternative to  for a 90% confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s equal to 33) _ hat best completes the statement or answ                                                                                                                                                                                                 | ers the      |
| que: | stion.  33) The area under each ch  LTIPLE CHOICE. Choose stion.                                                                                                                                                                                                                                          | i-square distribution is  the one alternative to  for a 90% confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s equal to 33) _ hat best completes the statement or answ                                                                                                                                                                                                 | ers the      |
| que: | stion.  33) The area under each characteristics.  LTIPLE CHOICE. Choose stion.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$ with 15 degrees of freed                                                                                                                                      | i-square distribution is  the one alternative to  for a 90% confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hat best completes the statement or answer interval using the chi-square distribution                                                                                                                                                                     | ers the      |
| que: | stion.  33) The area under each ch  LTIPLE CHOICE. Choose stion.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$ with 15 degrees of free A) 6.571, 23.685                                                                                                                                    | i-square distribution is the one alternative to for a 90% confidence dom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hat best completes the statement or answer interval using the chi-square distribution  B) 7.790, 21.064 D) 8.547, 22.307                                                                                                                                  | ers the      |
| que: | 33) The area under each characteristics.  12TIPLE CHOICE. Choose stion.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$ with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996  35) Find the values for $\chi^2_{\text{left}}$                                                           | i-square distribution is the one alternative to for a 90% confidence dom.  one and $\chi^2_{\text{right}}$ when $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hat best completes the statement or answer interval using the chi-square distribution  B) 7.790, 21.064 D) 8.547, 22.307 $\alpha = .05$ and $n = 27$ .                                                                                                    | ers the 34)  |
| que: | stion.  33) The area under each characteristics.  LTIPLE CHOICE. Choose stion.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$ with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996                                                                                                    | i-square distribution is the one alternative to for a 90% confidence dom.  of and $\chi^2_{\text{right}}$ when a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hat best completes the statement or answer interval using the chi-square distribution  B) 7.790, 21.064 D) 8.547, 22.307                                                                                                                                  | ers the 34)  |
| que: | 33) The area under each characteristics.  33) The area under each characteristics.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$ with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996  35) Find the values for $\chi^2_{\text{le}}$ A) 16.151 and 40.11 C) 15.379 and 38.88          | i-square distribution is  the one alternative the for a 90% confidence dom.  of and $\chi^2_{\text{right}}$ when a set and $\chi^2_{r$ | hat best completes the statement or answer interval using the chi-square distribution  B) 7.790, 21.064 D) 8.547, 22.307 $\alpha$ = .05 and $n$ = 27. B) 13.844 and 41.923 D) 14.573 and 43.194  variance of exam scores for 28 algebra                   | ers the 34)  |
| que: | 33) The area under each characteristics.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$ with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996  35) Find the values for $\chi^2_{\text{left}}$ A) 16.151 and 40.11 C) 15.379 and 38.88  36) What is the 90% confidents, if the standard | i-square distribution is  the one alternative the for a 90% confidence dom.  of and $\chi^2_{\text{right}}$ when a set and $\chi^2_{r$ | hat best completes the statement or answer interval using the chi-square distribution  B) 7.790, 21.064 D) 8.547, 22.307 $\alpha$ = .05 and $n$ = 27. B) 13.844 and 41.923 D) 14.573 and 43.194  variance of exam scores for 28 algebra at exam was 12.7? | ers the  34) |
| que: | 33) The area under each characteristics.  33) The area under each characteristics.  34) Find $\chi^2_{\text{left}}$ and $\chi^2_{\text{right}}$ with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996  35) Find the values for $\chi^2_{\text{le}}$ A) 16.151 and 40.11 C) 15.379 and 38.88          | i-square distribution is the one alternative to for a 90% confidence dom.  If and $\chi^2_{\text{right}}$ when a 3 is 5 lence interval for the value deviation of their lass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hat best completes the statement or answer interval using the chi-square distribution  B) 7.790, 21.064 D) 8.547, 22.307 $\alpha$ = .05 and $n$ = 27. B) 13.844 and 41.923 D) 14.573 and 43.194  variance of exam scores for 28 algebra                   | ers the  34) |

| 37) Construct a 99% confidence interval for the population standard deviation $\sigma$ if a sample                        |                                                                                                                                  |                                                                                          | 37) |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----|
| of size 11 has standard deviat<br>A) $9.45 < \sigma < 32.31$<br>C) $9.62 < \sigma < 30.83$                                | B) 9.85 <                                                                                                                        | $< \sigma < 29.66$<br>$< \sigma < 29.40$                                                 |     |
| 38) A new-car dealer is leasing vamonthly rates (in dollars) lister standard deviation) in leasing normally distributed.  | ed below. Estimate the true p                                                                                                    | opulation variance (and                                                                  | 38) |
| 165 173 200 241 241                                                                                                       | 245                                                                                                                              |                                                                                          |     |
| A) $19.75 < \sigma^2 < 190.92$<br>$4.44 < \sigma < 13.82$<br>C) $599.53 < \sigma^2 < 5796.37$<br>$24.49 < \sigma < 76.13$ | 26.82<br>D) 16.46                                                                                                                | $4 < \sigma^{2} < 6955.64$ $< \sigma < 83.40$ $< \sigma^{2} < 159.10$ $< \sigma < 12.61$ |     |
| 39) Is the statement $H_0$ : $\mu = 6$ a v                                                                                |                                                                                                                                  |                                                                                          | 39) |
| B) No, there is no paramet C) No, equalities are not p                                                                    | that compares two parameter<br>ter contained in this statement<br>permitted in a null hypothesis<br>that compares a parameter to | it.                                                                                      |     |
| 40) Are the following statements                                                                                          | $H_0: \lambda = 11 \text{ and } H_1: \lambda < 11 \text{ a}$                                                                     | valid pair of null and                                                                   | 40) |
| alternative hypothesis? A) No, $\lambda$ cannot be a param                                                                | neter                                                                                                                            |                                                                                          |     |
| *                                                                                                                         | pothesis specifies an equality                                                                                                   | and the null hypothesis                                                                  |     |
| , , ,                                                                                                                     | s should not state an equality.<br>s specifies an equality and th                                                                |                                                                                          |     |
| 41) Are the following statements hypotheses?                                                                              | $H_0 := 12 \text{ and } H_1 : \neq 12 \text{ valid}$                                                                             | d null and alternative                                                                   | 41) |
| A) No, there are no parame                                                                                                | eters contained in these state<br>re two non-overlapping hypo                                                                    |                                                                                          |     |
| 7                                                                                                                         | othesis cannot contain numer<br>re two non-overlapping hypo                                                                      |                                                                                          |     |
| 42) Determine whether the outcomes A test is made of $H_0$ :                                                              |                                                                                                                                  | I error, or a correct decision.<br>ne true value of $\mu$ is 40 and $H_0$                | 42) |
| is rejected.                                                                                                              | R) Correct desigion                                                                                                              | C) Tuna Larrar                                                                           |     |
| A) Type II error                                                                                                          | B) Correct decision                                                                                                              | C) Type I error                                                                          |     |

|               | 43) Determine whether the alternative hypothesis is left-tailed, right-tailed, or two-tailed. $H_0$ : $\mu = 71$ $H_1$ : $\mu < 71$             |                                                                          |                                                                    |                                                               |         |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------|
|               | A) left-tailed                                                                                                                                  | B) right-tai                                                             | led C                                                              | C) two-tailed                                                 |         |
|               | 44) Using the z table, find t<br>A) $\pm 1.88$                                                                                                  | he critical value (or v<br>B) ±2.17                                      | alues) for an $\alpha = 0.03$<br>C) 1.88                           | 3 two-tailed test.<br>D) 2.17                                 | 44)     |
|               | 45) Using the <i>z</i> table, find t<br>A) -2.43                                                                                                | he critical value (or v<br>B) -1.22                                      | alues) for an $\alpha = 0.03$<br>C) -1.09                          | 15 left-tailed test.<br>D) -2.17                              | 45)     |
|               | 46) A garbage collector bel per day. What is the nu                                                                                             |                                                                          |                                                                    | n four tons of garbage                                        | 46)     |
|               | A) $H_0: \mu = 4$                                                                                                                               | B) $H_0: \mu \neq 4$                                                     | C) $H_0: \mu \ge 4$                                                | D) $H_0: \mu < 4$                                             |         |
|               | 47) A test is made of $H_0$ : $\mu$                                                                                                             | = 55 versus $H_1$ : $\mu$ > 5                                            | 55. A sample of size $\lambda$                                     | y = 68 is drawn, and                                          | 47)     |
|               | x = 56. The population statistic z.                                                                                                             | standard deviation is                                                    | $\sigma$ = 27. Compute the                                         | value of the test                                             |         |
|               | A) 1.59                                                                                                                                         | B) 0.31                                                                  | C) 0.62                                                            | D) 0.04                                                       |         |
|               | 48) The Eagle Ridge Contra<br>subdivision is \$125,150<br>sale in this subdivision<br>Home Owners Associat<br>subdivision are actually<br>test? | with a standard devi<br>had an average sellin<br>ion is interested in kr | ation of \$7,350. A sag price of \$123,550. howing if the costs of | Imple of 36 homes for The Eagle Ridge Thomes for sale in this | 48)     |
|               | A) 0.1327                                                                                                                                       | B) 0.0036                                                                | C) 0.0853                                                          | D) 0.0951                                                     |         |
| SHOI          | RT ANSWER. Write the w                                                                                                                          | ord or phrase that l                                                     | est completes each                                                 | statement or answers                                          | the     |
|               | 49) Dr. Christina Cuttlemar<br>calories in a serving of<br>of 50 servings of popco<br>Dr. Cuttleman's claim a                                   | popcorn is 75 with a rn was found to have                                | standard deviation of                                              | 7. A sample                                                   |         |
| MUL'<br>quest | ΓΙΡ <b>LE CHOICE. Choose</b> ion.                                                                                                               | the one alternative t                                                    | hat best completes (                                               | the statement or answ                                         | ers the |
|               | 50) In a particular city, the secretaries from Compa population standard dev less than the city average A) 5.50                                 | ny A shows an averagiation of \$4500. Sec                                | ge annual salary of \$2 retaries at Company                        | 24,500 with a                                                 | 50)     |

| 51) | <ul> <li>51) The average greyhound can reach a top speed of 18.8 meters per second. A particular greyhound breeder claims her dogs are faster than the average greyhound. A sample of 50 of her dogs ran, on average, 19.2 meters per second with a population standard deviation of 1.4 meters per second. With α = 0.05, is her claim correct?</li> <li>A) No, because the test value 0.04 falls in the critical region.</li> <li>B) Yes, because the test value 0.04 falls in the noncritical region.</li> <li>C) Yes, because the test value 2.02 falls in the critical region.</li> <li>D) No, because the test value 0.40 falls in the critical region.</li> </ul> |                                       |           |                 | 51) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|-----------------|-----|
| 52) | 52) State whether the null hypothesis should be rejected on the basis of the given $P$ -value. $P$ -value = 0.001, $\alpha$ = 0.05, one-tailed test  A) Reject  B) Do not reject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |           |                 |     |
| 53) | What is the critical value A) 2.567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e for a two-tailed / test<br>B) 2.878 |           | 19?<br>D) 2.110 | 53) |
| 54) | <ul> <li>54) A sample of 46 students enroll in a program that claims to improve scores on the quantitative reasoning portion of the Graduate Record Examination (GRE). The participants take a mock GRE test before the program begins and again at the end to measure their improvement.</li> <li>The mean number of points improved was x = 16. Assume the standard deviation is σ = 53 and let μ be the population mean number of points improved. To determine whether the program is effective, a test is made of the hypotheses H<sub>0</sub>: μ = 0 versus H<sub>1</sub>: μ &gt; 0.</li> </ul>                                                                    |                                       |           |                 |     |
|     | Compute the value of th A) 14.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e test statistic. B) 2.05             | C) 0.0202 | D) 0.30         |     |
| 55) | 55) A sample of 35 students enroll in a program that claims to improve scores on the quantitative reasoning portion of the Graduate Record Examination (GRE). The participants take a mock GRE test before the program begins and again at the end to measure their improvement.                                                                                                                                                                                                                                                                                                                                                                                         |                                       |           |                 | 55) |
|     | The mean number of points improved was $x = 10$ . Assume the standard deviation is $\sigma = 46$ and let $\mu$ be the population mean number of points improved. To determine whether the program is effective, a test is made of the hypotheses $H_0$ : $\mu = 0$ versus $H_1$ : $\mu > 0$ .                                                                                                                                                                                                                                                                                                                                                                            |                                       |           |                 |     |
|     | Compute the <i>P</i> -value. A) 0.0496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B) 1.2861                             | C) 0.0248 | D) 0.0992       |     |

56) The mean annual tuition and fees for a sample of 12 private colleges was \$27,900 with a standard deviation of \$4400. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from \$31,500.

56) \_\_\_\_\_

State the null and alternate hypotheses.

A) 
$$H_0$$
:  $\mu = 31,500$ ,  $H_1$ :  $\mu \neq 31,500$ 

B) 
$$H_0$$
:  $\mu = 27,900$ ,  $H_1$ :  $\mu \neq 27,900$ 

C) 
$$H_0$$
:  $\mu = 31,500$ ,  $H_1$ :  $\mu = 27,900$ 

D) 
$$H_0$$
:  $\mu \neq 31,500$ ,  $H_1$ :  $\mu = 31,500$ 

57) The mean annual tuition and fees for a sample of 12 private colleges was \$36,800 with a standard deviation of \$5000. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from \$33,700.



Compute the value of the test statistic and state the number of degrees of freedom.

- A) 0.620; 11 degrees of freedom
- B) 2.148; 11 degrees of freedom
- C) 2.148; 12 degrees of freedom
- D) 0.620; 12 degrees of freedom

58) The mean annual tuition and fees for a sample of 11 private colleges was \$34,100 with a standard deviation of \$5400 A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from \$35,700.



State a conclusion regarding  $H_0$ . Use the  $\alpha = 0.10$  level of significance.

A) Reject H<sub>0</sub>.

The mean annual tuition and fees appears to be different from \$35,700.

- B) There is not enough information to draw a conclusion.
- C) Do not reject  $H_0$ .

There is insufficient evidence to conclude that the mean annual tuition and fees is different from \$35,700.

59) Doctors nationally believe that 70% of a certain type of operation are successful. In a particular hospital, 42 of these operations were observed and 32 of them were successful. At  $\alpha = 0.05$  is this hospital's success rate different from the national average?



- A) No, because the test value 0.52 is in the noncritical region.
- B) Yes, because the test value 0.52 is in the critical region.
- C) Yes, because the test value 0.88 is in the noncritical region.
- D) No, because the test value 0.88 is in the noncritical region.

- 60) State the appropriate null and alternative hypothesis and find the critical value for a right-tailed test with  $\alpha = 0.05$  and n = 18. Use  $\sigma^2 = 256$ .
- 60) \_\_\_\_

61)

62) \_\_\_\_\_

- A)  $H_{0:} \sigma^2 = 256$ 
  - $H_{1:} \sigma^2 < 256$
  - C. V. = 27.587
- C)  $H_{0:} \sigma^2 = 256$ 
  - $H_{1:} \sigma^2 > 256$
  - C. V. = 28.869

- B)  $H_0 \cdot \sigma^2 \neq 256$ 
  - $H_1 \cdot \sigma^2 < 256$
  - C. V. = 28.869
- D)  $H_0$ :  $\sigma^2 = 256$ 
  - $H_1 \cdot \sigma^2 > 256$
  - C. V. = 27.587
- 61) A lab technician is tested for her consistency by making multiple measurements of the cholesterol level in one blood sample. The target precision is a standard deviation of
  - 1.2 mg/dL or less. If 12 measurements are taken and the standard deviation is
  - 2.1 mg/dL, is there enough evidence to support the claim that her standard deviation is greater than the target, at  $\alpha = 0.01$ ?
    - A) No, since the  $\chi^2$  test value 19.25 is less than the critical value 24.725.
    - B) No, since the  $\chi^2$  test value 19.25 is less than the critical value 26.217.
    - C) Yes, since the  $\chi^2$  test value 33.688 is greater than the critical value 26.217.
    - D) Yes, since the  $\chi^2$  test value 33.688 is greater than the critical value 24.725.
- 62) Using Table G, find the *P*-value interval for the  $\chi^2$  test value.
  - $\chi^2 = 2.809$ , n = 12, left-tailed
  - A) 0.01 < P-value < 0.02
  - C) 0.99 < P-value < 0.995

- B) 0.005 < P-value < 0.01
- D) 0.0025 < P-value < 0.005

## Answer Key

Testname: REVIEW TEST 3 STATS

- 1) D
- 2) A
- 3) B
- 4) B
- 5) D
- 6) B
- 7) B
- 8) B
- 9) D
- 10) A
- 11) D
- 12) B
- 13) C
- 14) A
- 15) D
- 16) B
- 17) B
- 18) A
- 19) D
- 20) D
- 21) C
- 22) C
- 23) B
- 24) C
- 25) A
- 26) A
- 27) D
- 28) C
- 29) A
- 30) C
- 31) B
- 32) A
- 33) 1.00
- 34) C
- 35) B
- 36) B
- 37) A
- 38) C
- 39) D
- 40) D
- 41) A
- 42) C
- 43) A
- 44) B
- 45) D

## Answer Key

Testname: REVIEW TEST 3 STATS

- 46) A
- 47) B
- 48) D
- 49)  $H_0$ :  $\mu = 75$  (the claim) and  $H_1$ :  $\mu \neq 75$

Critical values: ±1.96

Test value: 3.03

Reject the null hypothesis.

There is not enough evidence to support the claim that the average number of calories in a serving of popcorn is 75.

- 50) C
- 51) C
- 52) A
- 53) C
- 54) B
- 55) D
- 56) A
- 57) B
- 58) C
- 59) D
- 60) D
- 61) D
- 62) B