MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. - 1) Which of the following properties distinguishes the standard normal distribution from other normal distributions? - 1) _____ - A) The curve is continuous. - B) The total area under the curve is equal to 1.00. - C) The mean is located at the center of the distribution. - D) The mean is 0 and the standard deviation is 1. - 2) The area under a normal distribution curve is always positive even if the z value is negative. - 2) _____ A) True - B) False - 3) Find the area under the standard normal distribution curve between z = 0 and z = 2.16. D) 0.9846 4) What is the area under the standard normal distribution curve between z = 1.50 and z = 2.50? - A) 0.0802 - B) 0.0606 - C) 1.00 - D) 0.0764 - 5) Find the area under the standard normal distribution curve to the left of z = 1.69. - A) 0.4452 - B) 0.9452 - C) 0.4545 - D) 0.9545 - 6) Find the area under the standard normal curve that lies between z = -1.9 and z = 2.2. - A) 0.0426 - B) 0.9574 - C) 0.5139 - D) 0.4861 - 7) - 7) The probability P(0 < z < 0.97) is 0.3340. - A) False B) True 8) - 8) Find the area under the standard normal curve to the right of z = 2. - A) 0.9772 - B) 0.0228 - C) 0.0114 - D) 0.4772 9) Find the probability P(z > 0.78) using the standard normal distribution. 9) - A) 0.7823 - B) 0.2823 - C) 0.7177 - D) 0.2177 - 10) - 10) Find the probability P(z > -0.54) using the standard normal distribution. - A) 0.7054 - B) 0.7946 - C) 0.2054 - D) 0.2946 - 11) Find the z-scores that bound the middle 74% of the area under the standard normal curve. - 11) - A) -1.07, 1.07 - B) -0.99, 0.99 - C) -1.24, 1.24 - D) -1.13, 1.13 | 2) The average length of crocodiles in a swamp is 11.5 feet. If the lengths are normally distributed with a standard deviation of 1.7 feet, find the probability that a crocodile is more than 11 feet long. | | | | 12) | |--|---|----------------------------------|-------------------|-----| | A) 0.12 | B) 0.62 | C) 0.38 | D) 0.88 | | | | on has a mean $\mu = 33$ an andomly chosen value v | | | 13) | | A) 0.8888 | B) 0.8554 | C) 0.1112 | D) 0.6915 | | | (mL) and standard | ng water fills plastic both
deviation 5 mL. The filles have volumes betwee | l volumes are normally | distributed. What | 14) | | A) 0.3399 | B) 0.0808 | C) 0.4207 | D) 0.6452 | | | (mL) and standard | ng water fills plastic both
deviation 6 mL. The fill
es have volumes less tha | l volumes are normally | | 15) | | A) 0.5438 | B) 1.0000 | C) 0.9772 | D) 0.5000 | | | (mL) and standard | ng water fills plastic both
deviation 7 mL. The fill
es have volumes less tha | l volumes are normally | | 16) | | A) 0.9997 | B) 0.3336 | C) 0.6293 | D) 1.0000 | | | (mL) and standard | ng water fills plastic both
deviation 4 mL. The fill
es have volumes less tha | l volumes are normally | | 17) | | A) 0.9970 | B) 0.7734 | C) 1.0000 | D) 0.8186 | | | | 5 will be drawn from a p | | | 18) | | A) 0.8040 | the probability that x wi
B) 0.0537 | C) 0.1423 | 5.
D) 0.7465 | | | 19) A sample of size 52 will be drawn from a population with mean 18 and standard | | | | 19) | | deviation 13. Find
A) 0.0485 | the probability that x wi
B) 0.9633 | ll be less than 21.
C) 0.9382 | D) 0.9515 | | | | a Boy Scout troop, 15% elected at random, find | | | 20) | | A) 31.3% | B) 81.3% | C) 36.6% | D) 86.6% | | | 21) A biologist estimates that 70% of the deer in a region carry a certain type of tick. For a sample of 300 deer selected at random, what is the chance that 216 or fewer deer have this tick? | | | | 21) | |---|------------------------------------|--|---------------------------------|-----| | A) 0.588 | B) 0.864 | C) 0.794 | D) 0.206 | | | 22) Find the level of the co
2.16 | onfidence interval that | has the given critical va | alue. | 22) | | A) 1.54% | B) 98.46% | C) 96.92% | D) 3.08% | | | population of millionai
age of all United States | illionaires was 54.8 years, find t | ears. If the standard development he 95% confidence inte | viation of the entire | 23) | | A) $52.8 < \mu < 56.8$
C) $54.0 < \mu < 55.6$ | | B) $53.3 < \mu < 56.3$
D) $53.5 < \mu < 56.1$ | | | | 24) A study of 65 bolts of 6 standard deviation of the confidence interval for A) $73.3 < \mu < 75.1$ C) $73.2 < \mu < 75.2$ | he population is 3.6 ya | ards. Which of the follo | _ | 24) | | 25) A population has a star
that a 99% confidence
A) 118 | | e.8. How large a sample e a margin of error equa | | 25) | | 26) A sample of size $n = 2$ | | | e critical value $t_{\alpha/2}$ | 26) | | needed to construct a 9
A) 1.725 | 90% confidence interv
B) 1.645 | al.
C) 1.721 | D) 1.325 | | | 27) A sample of size $n = 1$:
s = 2.4. Construct a 95
A) $14.3 < \mu < 16.9$
C) $15.1 < \mu < 16.1$ | | c = 15.6 and sample stan
for the population mea
B) 14.6 < μ < 16.6
D) 14.0 < μ < 17.2 | | 27) | | 28) 7 squirrels were found deviation is 1.1. Find the A) $8.3 < \mu < 9.1$ C) $7.7 < \mu < 9.7$ | | eight of 8.7 ounces with
terval of the true mean v
B) $6.0 < \mu < 11.4$
D) $7.9 < \mu < 9.5$ | | 28) | | | 29) In a study of 100 new c new cars that are white. | | d $\stackrel{\wedge}{p}$ and $\stackrel{\wedge}{q}$, where $\stackrel{\wedge}{p}$ is the proportion of | 29) | |------|---|--|---|--------------| | | A) $\stackrel{\wedge}{p} = 0.29$, $\stackrel{\wedge}{q} = 0$. | | B) $\stackrel{\wedge}{p} = 0.71, \stackrel{\wedge}{q} = 0.71$ | | | | C) $p = 0.29, q = 0.$ | | D) $p = 0.71, q = 0.71$
D) $p = 0.29, q = 0.29$ | | | | C) $p = 0.71, q = 0.$ | .29 | D) $p = 0.29, q = 0.29$ | | | | 30) In a survey of 305 regis | stered voters, 130 of the | nem wished to see Mayor Waffleskate lose | 30) | | | her next election. Const | truct a 95% confidenc | e interval for the proportion of registered | , <u></u> | | | voter who want to see N | • | | | | | A) 0.380 C) 0.371 < p < 0.482 | | B) 0.398 D) 0.317 < p < 0.535 | | | | $C_j 0.571 \cdot p \cdot 0.402$ | <u> </u> | D) 0.517 P < 0.555 | | | | 31) A recent poll of 700 peo | ople who work indoor | rs found that 278 smoke. If the researchers | 31) | | | | ent of their results to w | vithin 3.5 percentage points, how large a | | | | sample is necessary? | D) 1062 | C) 522 D) 22 | | | | A) 751 | B) 1062 | C) 532 D) 33 | | | | 32) A chi-square distributio | on is negatively skewe | d | 32) | | | A) False | in is negatively shelve | B) True | <i></i> | | | ORT ANSWER. Write the wastion. | vord or phrase that b | est completes each statement or answers | the | | | | | | the | | que: | stion. 33) The area under each ch | i-square distribution is | | | | que: | stion. 33) The area under each ch LTIPLE CHOICE. Choose stion. | i-square distribution is | s equal to 33) _ | | | que: | stion. 33) The area under each characteristics. LTIPLE CHOICE. Choose stion. 34) Find χ^2_{left} and χ^2_{right} | i-square distribution is the one alternative to for a 90% confidence | s equal to 33) _ hat best completes the statement or answ | ers the | | que: | stion. 33) The area under each ch LTIPLE CHOICE. Choose stion. | i-square distribution is the one alternative to for a 90% confidence | s equal to 33) _ hat best completes the statement or answ | ers the | | que: | stion. 33) The area under each characteristics. LTIPLE CHOICE. Choose stion. 34) Find χ^2_{left} and χ^2_{right} with 15 degrees of freed | i-square distribution is the one alternative to for a 90% confidence | hat best completes the statement or answer interval using the chi-square distribution | ers the | | que: | stion. 33) The area under each ch LTIPLE CHOICE. Choose stion. 34) Find χ^2_{left} and χ^2_{right} with 15 degrees of free A) 6.571, 23.685 | i-square distribution is the one alternative to for a 90% confidence dom. | hat best completes the statement or answer interval using the chi-square distribution B) 7.790, 21.064 D) 8.547, 22.307 | ers the | | que: | 33) The area under each characteristics. 12TIPLE CHOICE. Choose stion. 34) Find χ^2_{left} and χ^2_{right} with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996 35) Find the values for χ^2_{left} | i-square distribution is the one alternative to for a 90% confidence dom. one and χ^2_{right} when α | hat best completes the statement or answer interval using the chi-square distribution B) 7.790, 21.064 D) 8.547, 22.307 $\alpha = .05$ and $n = 27$. | ers the 34) | | que: | stion. 33) The area under each characteristics. LTIPLE CHOICE. Choose stion. 34) Find χ^2_{left} and χ^2_{right} with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996 | i-square distribution is the one alternative to for a 90% confidence dom. of and χ^2_{right} when a | hat best completes the statement or answer interval using the chi-square distribution B) 7.790, 21.064 D) 8.547, 22.307 | ers the 34) | | que: | 33) The area under each characteristics. 33) The area under each characteristics. 34) Find χ^2_{left} and χ^2_{right} with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996 35) Find the values for χ^2_{le} A) 16.151 and 40.11 C) 15.379 and 38.88 | i-square distribution is the one alternative the for a 90% confidence dom. of and χ^2_{right} when a set χ^2_{r | hat best completes the statement or answer interval using the chi-square distribution B) 7.790, 21.064 D) 8.547, 22.307 α = .05 and n = 27. B) 13.844 and 41.923 D) 14.573 and 43.194 variance of exam scores for 28 algebra | ers the 34) | | que: | 33) The area under each characteristics. 34) Find χ^2_{left} and χ^2_{right} with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996 35) Find the values for χ^2_{left} A) 16.151 and 40.11 C) 15.379 and 38.88 36) What is the 90% confidents, if the standard | i-square distribution is the one alternative the for a 90% confidence dom. of and χ^2_{right} when a set χ^2_{r | hat best completes the statement or answer interval using the chi-square distribution B) 7.790, 21.064 D) 8.547, 22.307 α = .05 and n = 27. B) 13.844 and 41.923 D) 14.573 and 43.194 variance of exam scores for 28 algebra at exam was 12.7? | ers the 34) | | que: | 33) The area under each characteristics. 33) The area under each characteristics. 34) Find χ^2_{left} and χ^2_{right} with 15 degrees of freed A) 6.571, 23.685 C) 7.261, 24.996 35) Find the values for χ^2_{le} A) 16.151 and 40.11 C) 15.379 and 38.88 | i-square distribution is the one alternative to for a 90% confidence dom. If and χ^2_{right} when a 3 is 5 lence interval for the value deviation of their lass | hat best completes the statement or answer interval using the chi-square distribution B) 7.790, 21.064 D) 8.547, 22.307 α = .05 and n = 27. B) 13.844 and 41.923 D) 14.573 and 43.194 variance of exam scores for 28 algebra | ers the 34) | | 37) Construct a 99% confidence interval for the population standard deviation σ if a sample | | | 37) | |---|--|--|-----| | of size 11 has standard deviat
A) $9.45 < \sigma < 32.31$
C) $9.62 < \sigma < 30.83$ | B) 9.85 < | $< \sigma < 29.66$
$< \sigma < 29.40$ | | | 38) A new-car dealer is leasing vamonthly rates (in dollars) lister standard deviation) in leasing normally distributed. | ed below. Estimate the true p | opulation variance (and | 38) | | 165 173 200 241 241 | 245 | | | | A) $19.75 < \sigma^2 < 190.92$
$4.44 < \sigma < 13.82$
C) $599.53 < \sigma^2 < 5796.37$
$24.49 < \sigma < 76.13$ | 26.82
D) 16.46 | $4 < \sigma^{2} < 6955.64$ $< \sigma < 83.40$ $< \sigma^{2} < 159.10$ $< \sigma < 12.61$ | | | 39) Is the statement H_0 : $\mu = 6$ a v | | | 39) | | B) No, there is no paramet C) No, equalities are not p | that compares two parameter
ter contained in this statement
permitted in a null hypothesis
that compares a parameter to | it. | | | 40) Are the following statements | $H_0: \lambda = 11 \text{ and } H_1: \lambda < 11 \text{ a}$ | valid pair of null and | 40) | | alternative hypothesis? A) No, λ cannot be a param | neter | | | | * | pothesis specifies an equality | and the null hypothesis | | | , , , | s should not state an equality.
s specifies an equality and th | | | | 41) Are the following statements hypotheses? | $H_0 := 12 \text{ and } H_1 : \neq 12 \text{ valid}$ | d null and alternative | 41) | | A) No, there are no parame | eters contained in these state
re two non-overlapping hypo | | | | 7 | othesis cannot contain numer
re two non-overlapping hypo | | | | 42) Determine whether the outcomes A test is made of H_0 : | | I error, or a correct decision.
ne true value of μ is 40 and H_0 | 42) | | is rejected. | R) Correct desigion | C) Tuna Larrar | | | A) Type II error | B) Correct decision | C) Type I error | | | | 43) Determine whether the alternative hypothesis is left-tailed, right-tailed, or two-tailed. H_0 : $\mu = 71$ H_1 : $\mu < 71$ | | | | | |---------------|---|--|--|---|---------| | | A) left-tailed | B) right-tai | led C | C) two-tailed | | | | 44) Using the z table, find t
A) ± 1.88 | he critical value (or v
B) ±2.17 | alues) for an $\alpha = 0.03$
C) 1.88 | 3 two-tailed test.
D) 2.17 | 44) | | | 45) Using the <i>z</i> table, find t
A) -2.43 | he critical value (or v
B) -1.22 | alues) for an $\alpha = 0.03$
C) -1.09 | 15 left-tailed test.
D) -2.17 | 45) | | | 46) A garbage collector bel per day. What is the nu | | | n four tons of garbage | 46) | | | A) $H_0: \mu = 4$ | B) $H_0: \mu \neq 4$ | C) $H_0: \mu \ge 4$ | D) $H_0: \mu < 4$ | | | | 47) A test is made of H_0 : μ | = 55 versus H_1 : μ > 5 | 55. A sample of size λ | y = 68 is drawn, and | 47) | | | x = 56. The population statistic z. | standard deviation is | σ = 27. Compute the | value of the test | | | | A) 1.59 | B) 0.31 | C) 0.62 | D) 0.04 | | | | 48) The Eagle Ridge Contra
subdivision is \$125,150
sale in this subdivision
Home Owners Associat
subdivision are actually
test? | with a standard devi
had an average sellin
ion is interested in kr | ation of \$7,350. A sag price of \$123,550. howing if the costs of | Imple of 36 homes for The Eagle Ridge Thomes for sale in this | 48) | | | A) 0.1327 | B) 0.0036 | C) 0.0853 | D) 0.0951 | | | SHOI | RT ANSWER. Write the w | ord or phrase that l | est completes each | statement or answers | the | | | 49) Dr. Christina Cuttlemar
calories in a serving of
of 50 servings of popco
Dr. Cuttleman's claim a | popcorn is 75 with a rn was found to have | standard deviation of | 7. A sample | | | MUL'
quest | ΓΙΡ LE CHOICE. Choose ion. | the one alternative t | hat best completes (| the statement or answ | ers the | | | 50) In a particular city, the secretaries from Compa population standard dev less than the city average A) 5.50 | ny A shows an averagiation of \$4500. Sec | ge annual salary of \$2 retaries at Company | 24,500 with a | 50) | | 51) | 51) The average greyhound can reach a top speed of 18.8 meters per second. A particular greyhound breeder claims her dogs are faster than the average greyhound. A sample of 50 of her dogs ran, on average, 19.2 meters per second with a population standard deviation of 1.4 meters per second. With α = 0.05, is her claim correct? A) No, because the test value 0.04 falls in the critical region. B) Yes, because the test value 0.04 falls in the noncritical region. C) Yes, because the test value 2.02 falls in the critical region. D) No, because the test value 0.40 falls in the critical region. | | | | 51) | |-----|--|---------------------------------------|-----------|-----------------|-----| | 52) | 52) State whether the null hypothesis should be rejected on the basis of the given P -value. P -value = 0.001, α = 0.05, one-tailed test A) Reject B) Do not reject | | | | | | 53) | What is the critical value A) 2.567 | e for a two-tailed / test
B) 2.878 | | 19?
D) 2.110 | 53) | | 54) | 54) A sample of 46 students enroll in a program that claims to improve scores on the quantitative reasoning portion of the Graduate Record Examination (GRE). The participants take a mock GRE test before the program begins and again at the end to measure their improvement. The mean number of points improved was x = 16. Assume the standard deviation is σ = 53 and let μ be the population mean number of points improved. To determine whether the program is effective, a test is made of the hypotheses H₀: μ = 0 versus H₁: μ > 0. | | | | | | | Compute the value of th A) 14.91 | e test statistic. B) 2.05 | C) 0.0202 | D) 0.30 | | | 55) | 55) A sample of 35 students enroll in a program that claims to improve scores on the quantitative reasoning portion of the Graduate Record Examination (GRE). The participants take a mock GRE test before the program begins and again at the end to measure their improvement. | | | | 55) | | | The mean number of points improved was $x = 10$. Assume the standard deviation is $\sigma = 46$ and let μ be the population mean number of points improved. To determine whether the program is effective, a test is made of the hypotheses H_0 : $\mu = 0$ versus H_1 : $\mu > 0$. | | | | | | | Compute the <i>P</i> -value. A) 0.0496 | B) 1.2861 | C) 0.0248 | D) 0.0992 | | 56) The mean annual tuition and fees for a sample of 12 private colleges was \$27,900 with a standard deviation of \$4400. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from \$31,500. 56) _____ State the null and alternate hypotheses. A) $$H_0$$: $\mu = 31,500$, H_1 : $\mu \neq 31,500$ B) $$H_0$$: $\mu = 27,900$, H_1 : $\mu \neq 27,900$ C) $$H_0$$: $\mu = 31,500$, H_1 : $\mu = 27,900$ D) $$H_0$$: $\mu \neq 31,500$, H_1 : $\mu = 31,500$ 57) The mean annual tuition and fees for a sample of 12 private colleges was \$36,800 with a standard deviation of \$5000. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from \$33,700. Compute the value of the test statistic and state the number of degrees of freedom. - A) 0.620; 11 degrees of freedom - B) 2.148; 11 degrees of freedom - C) 2.148; 12 degrees of freedom - D) 0.620; 12 degrees of freedom 58) The mean annual tuition and fees for a sample of 11 private colleges was \$34,100 with a standard deviation of \$5400 A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from \$35,700. State a conclusion regarding H_0 . Use the $\alpha = 0.10$ level of significance. A) Reject H₀. The mean annual tuition and fees appears to be different from \$35,700. - B) There is not enough information to draw a conclusion. - C) Do not reject H_0 . There is insufficient evidence to conclude that the mean annual tuition and fees is different from \$35,700. 59) Doctors nationally believe that 70% of a certain type of operation are successful. In a particular hospital, 42 of these operations were observed and 32 of them were successful. At $\alpha = 0.05$ is this hospital's success rate different from the national average? - A) No, because the test value 0.52 is in the noncritical region. - B) Yes, because the test value 0.52 is in the critical region. - C) Yes, because the test value 0.88 is in the noncritical region. - D) No, because the test value 0.88 is in the noncritical region. - 60) State the appropriate null and alternative hypothesis and find the critical value for a right-tailed test with $\alpha = 0.05$ and n = 18. Use $\sigma^2 = 256$. - 60) ____ 61) 62) _____ - A) $H_{0:} \sigma^2 = 256$ - $H_{1:} \sigma^2 < 256$ - C. V. = 27.587 - C) $H_{0:} \sigma^2 = 256$ - $H_{1:} \sigma^2 > 256$ - C. V. = 28.869 - B) $H_0 \cdot \sigma^2 \neq 256$ - $H_1 \cdot \sigma^2 < 256$ - C. V. = 28.869 - D) H_0 : $\sigma^2 = 256$ - $H_1 \cdot \sigma^2 > 256$ - C. V. = 27.587 - 61) A lab technician is tested for her consistency by making multiple measurements of the cholesterol level in one blood sample. The target precision is a standard deviation of - 1.2 mg/dL or less. If 12 measurements are taken and the standard deviation is - 2.1 mg/dL, is there enough evidence to support the claim that her standard deviation is greater than the target, at $\alpha = 0.01$? - A) No, since the χ^2 test value 19.25 is less than the critical value 24.725. - B) No, since the χ^2 test value 19.25 is less than the critical value 26.217. - C) Yes, since the χ^2 test value 33.688 is greater than the critical value 26.217. - D) Yes, since the χ^2 test value 33.688 is greater than the critical value 24.725. - 62) Using Table G, find the *P*-value interval for the χ^2 test value. - $\chi^2 = 2.809$, n = 12, left-tailed - A) 0.01 < P-value < 0.02 - C) 0.99 < P-value < 0.995 - B) 0.005 < P-value < 0.01 - D) 0.0025 < P-value < 0.005 ## Answer Key Testname: REVIEW TEST 3 STATS - 1) D - 2) A - 3) B - 4) B - 5) D - 6) B - 7) B - 8) B - 9) D - 10) A - 11) D - 12) B - 13) C - 14) A - 15) D - 16) B - 17) B - 18) A - 19) D - 20) D - 21) C - 22) C - 23) B - 24) C - 25) A - 26) A - 27) D - 28) C - 29) A - 30) C - 31) B - 32) A - 33) 1.00 - 34) C - 35) B - 36) B - 37) A - 38) C - 39) D - 40) D - 41) A - 42) C - 43) A - 44) B - 45) D ## Answer Key Testname: REVIEW TEST 3 STATS - 46) A - 47) B - 48) D - 49) H_0 : $\mu = 75$ (the claim) and H_1 : $\mu \neq 75$ Critical values: ±1.96 Test value: 3.03 Reject the null hypothesis. There is not enough evidence to support the claim that the average number of calories in a serving of popcorn is 75. - 50) C - 51) C - 52) A - 53) C - 54) B - 55) D - 56) A - 57) B - 58) C - 59) D - 60) D - 61) D - 62) B