Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Which of the following properties distinguishes the standard normal distribution from other normal distributions?
A) The curve is continuous.
B) The total area under the curve is equal to 1.00 .
C) The mean is located at the center of the distribution.
D) The mean is 0 and the standard deviation is 1 .
2) The area under a normal distribution curve is always positive even if the z value is negative.
A) True
B) False
3) Find the area under the standard normal distribution curve between $z=0$ and $z=2.16$.
4) \qquad
5) \qquad

A) 2.1600
B) 0.4846
C) 0.3708
D) 0.9846
6) What is the area under the standard normal distribution curve between $z=1.50$ and \qquad

A) 0.0802
B) 0.0606
C) 1.00
D) 0.0764
7) Find the area under the standard normal distribution curve to the left of $z=1.69$.
8) \qquad

A) 0.4452
B) 0.9452
C) 0.4545
D) 0.9545
9) Find the area under the standard normal curve that lies between $z=-1.9$ and $z=2.2$.
10) \qquad
A) 0.0426
B) 0.9574
C) 0.5139
D) 0.4861
11) The probability $P(0<z<0.97)$ is 0.3340 .
A) False
B) True
12) Find the area under the standard normal curve to the right of $z=2$.
A) 0.9772
B) 0.0228
C) 0.0114
D) 0.4772
13) Find the probability $P(z>0.78)$ using the standard normal distribution.
A) 0.7823
B) 0.2823
C) 0.7177
D) 0.2177
14) Find the probability $P(z>-0.54)$ using the standard normal distribution.
A) 0.7054
B) 0.7946
C) 0.2054
D) 0.2946
15) Find the z-scores that bound the middle 74% of the area under the standard normal
16) \qquad
17) \qquad
18) \qquad
19) \qquad
20) \qquad curve.
A) $-1.07,1.07$
B) $-0.99,0.99$
C) $-1.24,1.24$
D) $-1.13,1.13$
21) The average length of crocodiles in a swamp is 11.5 feet. If the lengths are normally distributed with a standard deviation of 1.7 feet, find the probability that a crocodile is more than 11 feet long.
A) 0.12
B) 0.62
C) 0.38
D) 0.88
22) A normal population has a mean $\mu=33$ and standard deviation $\sigma=9$. What is the probability that a randomly chosen value will be greater than 44 ?
A) 0.8888
B) 0.8554
C) 0.1112
D) 0.6915
23) A bottler of drinking water fills plastic bottles with a mean volume of 999 milliliters (mL) and standard deviation 5 mL . The fill volumes are normally distributed. What proportion of bottles have volumes between 992 mL and 998 mL ?
A) 0.3399
B) 0.0808
C) 0.4207
D) 0.6452
24) A bottler of drinking water fills plastic bottles with a mean volume of 1001 milliliters (mL) and standard deviation 6 mL . The fill volumes are normally distributed. What proportion of bottles have volumes less than 1001 mL ?
A) 0.5438
B) 1.0000
C) 0.9772
D) 0.5000
25) A bottler of drinking water fills plastic bottles with a mean volume of 992 milliliters (mL) and standard deviation 7 mL . The fill volumes are normally distributed. What proportion of bottles have volumes less than 989 mL ?
A) 0.9997
B) 0.3336
C) 0.6293
D) 1.0000
26) A bottler of drinking water fills plastic bottles with a mean volume of 991 milliliters (mL) and standard deviation 4 mL . The fill volumes are normally distributed. What proportion of bottles have volumes less than 994 mL ?
A) 0.9970
B) 0.7734
C) 1.0000
D) 0.8186
27) A sample of size 65 will be drawn from a population with mean 22 and standard deviation 15 . Find the probability that \bar{x} will be between 20 and 25 .
A) 0.8040
B) 0.0537
C) 0.1423
D) 0.7465
28) A sample of size 52 will be drawn from a population with mean 18 and standard deviation 13 . Find the probability that \bar{x} will be less than 21 .
A) 0.0485
B) 0.9633
C) 0.9382
D) 0.9515
29) Of the members of a Boy Scout troop, 15% have received the first aid merit badge. If
30)
31) \qquad 40 boy scouts are selected at random, find the probability that four or more will have the first aid merit badge?
A) 31.3%
B) 81.3%
C) 36.6%
D) 86.6%
32) A biologist estimates that 70% of the deer in a region carry a certain type of tick. For a sample of 300 deer selected at random, what is the chance that 216 or fewer deer have this tick?
A) 0.588
B) 0.864
C) 0.794
D) 0.206
33) Find the level of the confidence interval that has the given critical value.
34) 2.16
A) 1.54%
B) 98.46%
C) 96.92%
D) 3.08%
35) An economics professor randomly selected 100 millionaires in the United States. The average age of these millionaires was 54.8 years. If the standard deviation of the entire population of millionaires is 7.9 years, find the 95% confidence interval for the mean age of all United States millionaires.
A) $52.8<\mu<56.8$
B) $53.3<\mu<56.3$
C) $54.0<\mu<55.6$
D) $53.5<\mu<56.1$
36) A study of 65 bolts of carpet showed that their average length was 74.2 yards. The standard deviation of the population is 3.6 yards. Which of the following is the 98% confidence interval for the mean length per bolt of carpet?
A) $73.3<\mu<75.1$
B) $73.7<\mu<74.7$
C) $73.2<\mu<75.2$
D) $72.1<\mu<76.3$
37) A population has a standard deviation $\sigma=19.8$. How large a sample must be drawn so that a 99% confidence interval for μ will have a margin of error equal to 4.7 ?
A) 118
B) 215
C) 7
D) 11
38) A sample of size $n=21$ is drawn from a normal population. Find the critical value $t_{\alpha / 2}$ needed to construct a 90% confidence interval.
A) 1.725
B) 1.645
C) 1.721
D) 1.325
39) A sample of size $n=11$ has a sample mean $\bar{x}=15.6$ and sample standard deviation $s=2.4$. Construct a 95% confidence interval for the population mean μ.
A) $14.3<\mu<16.9$
B) $14.6<\mu<16.6$
C) $15.1<\mu<16.1$
D) $14.0<\mu<17.2$
40) 7 squirrels were found to have an average weight of 8.7 ounces with a sample standard deviation is 1.1 . Find the 95% confidence interval of the true mean weight.
A) $8.3<\mu<9.1$
B) $6.0<\mu<11.4$
C) $7.7<\mu<9.7$
D) $7.9<\mu<9.5$
\qquad
41) \qquad

42) In a study of 100 new cars, 29 are white. Find \hat{p} and \hat{q}, where \hat{p} is the proportion of new cars that are white.
A) $\hat{p}=0.29, \hat{q}=0.71$
B) $\hat{p}=0.71, \hat{q}=0.71$
C) $\hat{p}=0.71, \hat{q}=0.29$
D) $\hat{p}=0.29, \stackrel{\hat{q}}{ }=0.29$
43) In a survey of 305 registered voters, 130 of them wished to see Mayor Waffleskate lose
44) her next election. Construct a 95% confidence interval for the proportion of registered voter who want to see Mayor Waffleskate defeated.
A) $0.380<p<0.473$
B) $0.398<p<0.455$
C) $0.371<p<0.482$
D) $0.317<p<0.535$
45) A recent poll of 700 people who work indoors found that 278 smoke. If the researchers
46) want to be 98% confident of their results to within 3.5 percentage points, how large a sample is necessary?
A) 751
B) 1062
C) 532
D) 33
47) A chi-square distribution is negatively skewed.
48)

A) False
B) True

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

33) The area under each chi-square distribution is equal to \qquad -
34) \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the
question.
34) Find $\chi \underset{\text { left }}{2}$ and $\chi_{\text {right }}^{2}$ for a 90% confidence interval using the chi-square distribution \qquad with 15 degrees of freedom.
A) $6.571,23.685$
B) $7.790,21.064$
C) $7.261,24.996$
D) $8.547,22.307$
35) Find the values for $\chi \underset{\text { left }}{2}$ and $\chi_{\text {right }}^{2}$ when $\alpha=.05$ and $n=27$.
35) \qquad
A) 16.151 and 40.113
B) 13.844 and 41.923
C) 15.379 and 38.885
D) 14.573 and 43.194
36) What is the 90% confidence interval for the variance of exam scores for 28 algebra
36) students, if the standard deviation of their last exam was 12.7 ?
A) $10.4<\sigma^{2}<16.4$
B) $108.6<\sigma^{2}<269.6$
C) $123.7<\sigma^{2}<312.7$
D) $122.8<\sigma^{2}<316.5$
37) Construct a 99% confidence interval for the population standard deviation σ if a sample of size 11 has standard deviation $s=15$.
A) $9.45<\sigma<32.31$
B) $9.85<\sigma<29.66$
C) $9.62<\sigma<30.83$
D) $9.17<\sigma<29.40$
38) A new-car dealer is leasing various brand-new randomly selected models for the monthly rates (in dollars) listed below. Estimate the true population variance (and standard deviation) in leasing rates with 90% confidence. Assume the variable is normally distributed.

$\begin{array}{llllll}165 & 173 & 200 & 241 & 241 & 245\end{array}$

A) $19.75<\sigma^{2}<190.92$
B) $719.44<\sigma^{2}<6955.64$ $4.44<\sigma<13.82$
$26.82<\sigma<83.40$
C) $599.53<\sigma^{2}<5796.37$
D) $16.46<\sigma^{2}<159.10$
$24.49<\sigma<76.13$
$4.06<\sigma<12.61$
39) Is the statement $H_{0}: \mu=6$ a valid null hypothesis?
39)
A) Yes, this is a statement that compares two parameters.
B) No, there is no parameter contained in this statement.
C) No, equalities are not permitted in a null hypothesis.
D) Yes, this is a statement that compares a parameter to a value.
40) Are the following statements $H_{0}: \lambda=11$ and $H_{1}: \lambda<11$ a valid pair of null and
40) alternative hypothesis?
A) No, λ cannot be a parameter
B) Yes, the alternative hypothesis specifies an equality and the null hypothesis specifies a difference.
C) No, the null hypothesis should not state an equality.
D) Yes, the null hypothesis specifies an equality and the alternative specifies a difference.
41) Are the following statements $H_{0}:=12$ and $H_{1}: \neq 12$ valid null and alternative hypotheses?
A) No, there are no parameters contained in these statements.
B) Yes, these statements are two non-overlapping hypotheses and compare a parameter to a value.
C) No, the alternative hypothesis cannot contain numeric values.
D) Yes, these statements are two non-overlapping hypotheses and compare two parameters.
42) Determine whether the outcome is a Type I error, a Type II error, or a correct decision.

A test is made of $H_{0}: \mu=40$ versus $H_{1}: \mu \neq 40$. The true value of μ is 40 and H_{0} is rejected.
A) Type II error
B) Correct decision
C) Type I error
43) Determine whether the alternative hypothesis is left-tailed, right-tailed, or two-tailed. \qquad

$$
H_{0}: \mu=71 \quad H_{1}: \mu<71
$$

A) left-tailed
B) right-tailed
C) two-tailed
44) Using the z table, find the critical value (or values) for an $\alpha=0.03$ two-tailed test.
A) ± 1.88
B) ± 2.17
C) 1.88
D) 2.17
\qquad
45) Using the z table, find the critical value (or values) for an $\alpha=0.015$ left-tailed test. \qquad
A) -2.43
B) -1.22
C) -1.09
D) -2.17
46) A garbage collector believes that he averages picking up more than four tons of garbage
46) per day. What is the null hypothesis for his statement?
A) $H_{0}: \mu=4$
B) $H_{0}: \mu \neq 4$
C) $H_{0}: \mu \geq 4$
D) $H_{0}: \mu<4$
47) A test is made of $H_{0}: \mu=55$ versus $H_{1}: \mu>55$. A sample of size $n=68$ is drawn, and
47) \qquad $\bar{x}=56$. The population standard deviation is $\sigma=27$. Compute the value of the test statistic z.
A) 1.59
B) 0.31
C) 0.62
D) 0.04
48) The Eagle Ridge Contractors Association claims the average price of a home in their \qquad subdivision is $\$ 125,150$ with a standard deviation of $\$ 7,350$. A sample of 36 homes for sale in this subdivision had an average selling price of $\$ 123,550$. The Eagle Ridge Home Owners Association is interested in knowing if the costs of homes for sale in this subdivision are actually lower than claimed? What is the p-value for this left-tailed test?
A) 0.1327
B) 0.0036
C) 0.0853
D) 0.0951

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

49) Dr. Christina Cuttleman, a nutritionist, claims that the average number of
50) calories in a serving of popcorn is 75 with a standard deviation of 7 . A sample of 50 servings of popcorn was found to have an average of 78 calories. Check Dr. Cuttleman's claim at $\alpha=0.05$.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

50) In a particular city, the average annual salary for secretaries is $\$ 28,000$. A sample of 50
51) secretaries from Company A shows an average annual salary of $\$ 24,500$ with a population standard deviation of $\$ 4500$. Secretaries at Company A claim they are paid less than the city average. What is the test value for this claim?
A) 5.50
B) 0.78
C) -5.50
D) -0.78
52) The average greyhound can reach a top speed of 18.8 meters per second. A particular greyhound breeder claims her dogs are faster than the average greyhound. A sample of 50 of her dogs ran, on average, 19.2 meters per second with a population standard deviation of 1.4 meters per second. With $\alpha=0.05$, is her claim correct?
A) No, because the test value 0.04 falls in the critical region.
B) Yes, because the test value 0.04 falls in the noncritical region.
C) Yes, because the test value 2.02 falls in the critical region.
D) No, because the test value 0.40 falls in the critical region.
53) State whether the null hypothesis should be rejected on the basis of the given P-value. P-value $=0.001, \alpha=0.05$, one-tailed test
A) Reject
B) Do not reject
54) What is the critical value for a two-tailed t test when $\alpha=0.02$ and $n=19$?
55) \qquad
56) \qquad
57) quantitative reasoning portion of the Graduate Record Examination (GRE). The participants take a mock GRE test before the program begins and again at the end to measure their improvement.

The mean number of points improved was $\bar{x}=16$. Assume the standard deviation is $\sigma=53$ and let μ be the population mean number of points improved. To determine whether the program is effective, a test is made of the hypotheses $H_{0}: \mu=0$ versus $H_{1}: \mu>0$.

Compute the value of the test statistic.
A) 14.91
B) 2.05
C) 0.0202
D) 0.30
55) A sample of 35 students enroll in a program that claims to improve scores on the 55) quantitative reasoning portion of the Graduate Record Examination (GRE). The participants take a mock GRE test before the program begins and again at the end to measure their improvement.

The mean number of points improved was $\bar{x}=10$. Assume the standard deviation is $\sigma=46$ and let μ be the population mean number of points improved. To determine whether the program is effective, a test is made of the hypotheses $H_{0}: \mu=0$ versus $H_{1}: \mu>0$.

Compute the P-value.
A) 0.0496
B) 1.2861
C) 0.0248
D) 0.0992
56) The mean annual tuition and fees for a sample of 12 private colleges was $\$ 27,900$ with a standard deviation of $\$ 4400$. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from $\$ 31,500$.

State the null and alternate hypotheses.
A) $H_{0}: \mu=31,500, H_{1}: \mu \neq 31,500$
B) $H_{0}: \mu=27,900, H_{1}: \mu \neq 27,900$
C) $H_{0}: \mu=31,500, H_{1}: \mu=27,900$
D) $H_{0}: \mu \neq 31,500, H_{1}: \mu=31,500$
57) The mean annual tuition and fees for a sample of 12 private colleges was $\$ 36,800$ with a standard deviation of $\$ 5000$. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from $\$ 33,700$.

Compute the value of the test statistic and state the number of degrees of freedom.
A) 0.620; 11 degrees of freedom
B) $2.148 ; 11$ degrees of freedom
C) $2.148 ; 12$ degrees of freedom
D) $0.620 ; 12$ degrees of freedom
58) The mean annual tuition and fees for a sample of 11 private colleges was $\$ 34,100$ with a standard deviation of $\$ 5400$ A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from $\$ 35,700$.

State a conclusion regarding H_{0}. Use the $\alpha=0.10$ level of significance.
A) Reject H_{0}.

The mean annual tuition and fees appears to be different from $\$ 35,700$.
B) There is not enough information to draw a conclusion.
C) Do not reject H_{0}.

There is insufficient evidence to conclude that the mean annual tuition and fees is different from $\$ 35,700$.
59) Doctors nationally believe that 70% of a certain type of operation are successful. In a
\qquad

[^0]

60) State the appropriate null and alternative hypothesis and find the critical value for a right-tailed test with $\alpha=0.05$ and $n=18$. Use $\sigma^{2}=256$.
A) $\mathrm{H}_{\mathrm{O}}: \sigma^{2}=256$
B) $\mathrm{H}_{\mathrm{o}}: \sigma^{2} \neq 256$
$\mathrm{H}_{1}: \sigma^{2}<256$
$\mathrm{H}_{1}: \sigma^{2}<256$
C. V. $=27.587$
C. V. $=28.869$
C) $\mathrm{H}_{\mathrm{O}}: \sigma^{2}=256$
D) $\mathrm{H}_{\mathrm{O}}: \sigma^{2}=256$
$\mathrm{H}_{1}: \sigma^{2}>256$
$\mathrm{H}_{1}: \sigma^{2}>256$
C. V. $=28.869$
C. V. $=27.587$
61) A lab technician is tested for her consistency by making multiple measurements of the
62) cholesterol level in one blood sample. The target precision is a standard deviation of $1.2 \mathrm{mg} / \mathrm{dL}$ or less. If 12 measurements are taken and the standard deviation is
$2.1 \mathrm{mg} / \mathrm{dL}$, is there enough evidence to support the claim that her standard deviation is greater than the target, at $\alpha=0.01$?
A) No, since the χ^{2} test value 19.25 is less than the critical value 24.725 .
B) No, since the χ^{2} test value 19.25 is less than the critical value 26.217 .
C) Yes, since the χ^{2} test value 33.688 is greater than the critical value 26.217 .
D) Yes, since the χ^{2} test value 33.688 is greater than the critical value 24.725 .
63) Using Table G, find the P-value interval for the χ^{2} test value.
64) $\chi^{2}=2.809, n=12$, left-tailed
A) $0.01<P$-value <0.02
B) $0.005<P$-value <0.01
C) $0.99<P$-value <0.995
D) $0.0025<P$-value <0.005

Answer Key
Testname: REVIEW TEST 3 STATS

1) D
2) A
3) B
4) B
5) D
6) B
7) B
8) B
9) D
10) A
11) D
12) B
13) C
14) A
15) D
16) B
17) B
18) A
19) D
20) D
21) C
22) C
23) B
24) C
25) A
26) A
27) D
28) C
29) A
30) C
31) B
32) A
33) 1.00
34) C
35) B
36) B
37) A
38) C
39) D
40) D
41) A
42) C
43) A
44) B
45) D
46) A
47) B
48) D
49) $H_{0}: \mu=75$ (the claim) and $H_{1}: \mu \neq 75$

Critical values: ± 1.96
Test value: 3.03
Reject the null hypothesis.
There is not enough evidence to support the claim that the average number of calories in a serving of popcorn is 75 .
50) C
51) C
52) A
53) C
54) B
55) D
56) A
57) B
58) C
59) D
60) D
61) D
62) B

[^0]: