The McGraw·Hill Companies

Lecture PowerPoint to accompany Foundations in Microbiology **Seventh Edition** Talaro Chapter 1 The Main Themes of Microbiology

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 Microbiology

- The study of organisms too small to be seen without magnification
- Microorganisms include:
 - Bacteria
 - Viruses
 - Fungi
 - Protozoa
 - Helminths (worms)
 - Algae

Figure 1.6 The six types of microorganisms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Reproductive spores

Bacteria: *E. coli* 3,000x. Fine filaments are flagella.

Fungus: Thamnidium 400x

Cell with row of cilia

Algae: Volvox and Spirogyra 200x

Virus: Herpes simplex 100,000x

Vorticella, a colonial protozoan 400x. Cilia beat to pull in food.

Helminth: Head (scolex) of *Taenia solium* 100x. Fine barbs on mouth are used for attachment.

© Visuals Unlimited, Tom Volk, T.E. Adams/Visuals Unlimited, Public Health Image Library, Carolina Biological Supply/Phototake, Public Health Image Library

Microbiological Endeavors Table 1.1

- Immunology
- Public health microbiology and epidemiology
- Food, dairy, and aquatic microbiology
- Agricultural Microbiology
- Biotechnology
- Genetic Engineering and Recombinant DNA Technology

1.2 Origins of Microorganisms

- Bacteria-like organisms have existed on earth for about 3.5 billion years
 - Prokaryotes (pre-nucleus): Simple cells
 - Eukaryotes (true nucleus): Complex cells

Microbial Involvement in Energy and Nutrient Flow

- The flow of energy and food through the earth's ecosystems
 - Photosynthesis: Light fueled conversion of carbon dioxide to organic material
 - Decomposition: Breakdown of dead matter and wastes into simple compounds

1.3 Human Uses of Microorganisms

- Biotechnology
 - Production of foods, drugs, and vaccines
- Genetic engineering
 Recombinant DNA
- Bioremediation

Microbes at Work

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

Microbes at Work

- How Fast Can Microbes Clean Up the Gulf Oil Spill?
- New research suggests bacteria in the deep waters of the Gulf of Mexico may be eating oil plumes quickly
 - http://www.scientificamerican.com/article.cfm?id=how-fastmicrobes-consume-gulf-oil-spill

٠

http://www.sciencemag.org/content/330/6 001/204.abstract

1.4 Infectious Diseases

- **Pathogens**: Microorganisms that do harm
- Nearly 2,000 different microbes cause diseases
- 10 B new infections/year worldwide
- 12 M deaths from infections/year worldwide

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
TABLE 1.2 Top Causes of Death—All Diseases				
United States	No. of Deaths	Worldwide	No. of Deaths	
1. Heart disease	696,950	1. Heart disease	8.12 million	
2. Cancer	557,270	2. Stroke	5.51 million	
3. Stroke	162,670	3. Respiratory infection	3.88 million	
4. Chronic lower respiratory disease	124,800	4. Cancer	3.33 million	
5. Unintentional injury (accidents)	106,740	5. HIV/AIDS	2.78 million	
6. Diabetes	73,250	6. Chronic lower respiratory disease	2.75 million	
7. Influenza and pneumonia*	65,680	7. Diarrheal disease	1.80 million	
8. Alzheimer disease	58,870	8. Tuberculosis	1.57 million	
9. Kidney problems	40,970	9. Malaria	1.27 million	
10. Septicemia (bloodstream infection)	33,865	10. Accidents	1.19 million	

*Diseases in red are those most clearly caused by microorganisms although cancer and other diseases may be associated with infections.

12

Figure 1.4 Worldwide infectious disease statistics

1.5 Characteristics of Microbes

- Two cell lines
 - Prokaryote microscopic, unicellular organisms, lack nuclei and membrane-bound organelles
 - Eukaryote unicellular (microscopic) and multicellular, nucleus and membrane-bound organelles
- Viruses
 - Acellular, parasitic particles composed of a nucleic acid and protein

Figure 1.5 Basic structure of cells and viruses

Microbial Dimensions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.			
1 mm Range of human eye	Reproductive structure Reproductive structure Macroscopic Macroscopic		
100 μm Range of light microscope 10 μm 10 μm	Microscopic Colonial alga (Pediastrum) Red blood cell Most bacteria fall between 1 to 10 μm in size Rod-shaped bacteria (Fecharichia coli)		
200 nm 200 nm 100 nm Range 10 nm of electron microscope 1 nm	Mycoplasma bacteria Poxvirus Image: AlDS virus Image: AlDS virus Image: Poliovirus Image: AlDS virus Image: Poliovirus Image: Poliovirus Image: Poliovirus Ima		
Require special microscopes 0.1 nm (1 Angstrom)	Amino acid (small molecule)		
Metric Scale	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Lifestyles of Microorganisms

- Majority live a free existence, are relatively harmless and often beneficial
- Many microorganisms have close associations with other organisms
 - Parasites
 - Hosts

1.6 Historical Foundations of Microbiology

- Thousands of microbiologists, 300 years
- Prominent discoveries include:
 - Microscopy
 - Scientific method
 - Development of medical microbiology
 - Microbiology techniques

Spontaneous Generation

Early belief that some forms of life could arise from vital forces present in nonliving or decomposing matter (flies from manure, etc.)

Antoni van Leeuwenhoek (1632-1723)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Bettmann/Corbis

- Dutch linen merchant
- First to observe living microbes
- Single-lens magnified up to 300X

Scientific Method

- Approach taken by scientists to explain a certain natural phenomenon
- Form a *hypothesis* a tentative explanation that can be supported or refuted
 - Deductive approach "If..., then...."
- A lengthy process of experimentation, analysis, and testing either supports or refutes the hypothesis

- Results must be published and repeated by other investigators.
- If *hypothesis* is supported by a growing body of evidence and survives rigorous scrutiny, it moves to the next level of confidence it becomes a *theory*.
- If evidence of a *theory* is so compelling that the next level of confidence is reached, it becomes a *Law* or *principle*.

The Development of Medical Microbiology

- Early experiments led to the realization that microbes are everywhere
- This discovery led to immediate applications in medicine
 - *Germ theory of disease:* resulted in the use of sterile, aseptic, and pure culture techniques

Discovery of Spores and Sterilization

- John Tyndall and Ferdinand Cohn each demonstrated the presence of heat resistant forms of some microbes.
 - Cohn determined these forms to be heatresistant bacterial **endospores.**
- **Sterility** requires the elimination of all life forms including endospores and viruses.

Figure 1.10 The pattern of deductive reasoning

(b)

Development of Aseptic Techniques

- The human body is a source of infection
 - Dr. Oliver Wendell Holmes observed that mothers of home births had fewer infections than those who gave birth in hospitals
 - Dr. Ignaz Semmelweis correlated infections with physicians coming directly from autopsy room to maternity ward

- Joseph Lister introduced aseptic techniques reducing microbes in medical settings and preventing wound infections
 - Involved disinfection of hands using chemicals prior to surgery
 - Use of heat for sterilization

Pathogens and Germ Theory of Disease

- Many diseases are caused by the growth of microbes in the body and not by sins, bad character, or poverty, etc.
- Two major contributors:

Louis Pasteur and Robert Koch

Louis Pasteur (1822-1895)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Showed microbes caused fermentation and spoilage
- Disproved spontaneous generation of microorganisms
- Developed pasteurization
- Demonstrated what is now known as Germ Theory of Disease

© AKG/Photo Researchers

Louis Pasteur (1822-1895)

Robert Koch (1843-1910)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Bettmann/Corbis

- Established Koch's
 postulates a sequence of
 experimental steps that verified the
 germ theory
- Identified cause of anthrax, TB, and cholera
- Developed pure culture methods

Robert Koch (1843-1910)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Bettmann/Corbis

Koch's postulates

- Isolate the pathogen (virus, microbe, etc.) from sick creature.
- Grow the pathogen in the laboratory and obtain a pure culture.
- Inoculate a healthy creature with a sample from the pure culture. The pathogen should cause the same disease symptoms that were seen in first creature.
- Reisolate the same pathogen from the second sick animal.

1.7 Taxonomy

- **Taxonomy**: organizing, classifying, and naming living things
 - Formal system originated by Carl von Linné
- Concerned with:
 - Classification orderly arrangement of organisms into groups
 - Nomenclature assigning names
 - Identification determining and recording traits of organisms for placement into taxonomic schemes

Levels of Classification

- Domain Archaea, Bacteria, & Eukarya
- Kingdom
- Phylum or Division
- Class
- Order
- Family
- Genus
- Species

Figure 1.13 Sample taxonomy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Domain: Eukarya (All eukaryotic organisms) Domain: Eukarya (All eukaryotic organisms)

Assigning Specific Names

- Binomial (scientific) nomenclature
- Gives each microbe 2 names:
 - Genus capitalized
 - species lowercase
- Both italicized or underlined
 - Staphylococcus aureus (S. aureus)
- Inspiration for names is extremely varied and often imaginative

The Origin and Evolution of Microorganisms

- Phylogeny: natural relatedness between groups of organisms
- Evolution
 - All new species originate from preexisting species
 - Closely related organism have similar features because they evolved from common ancestral forms
- Evolution usually progresses toward greater complexity

3 Domains

- Bacteria true bacteria
- Archaea odd bacteria that live in extreme environments, high salt, heat, etc.
- Eukarya have a nucleus and organelles

