Name			

MULTIPLE CHOICE	Choose the one alternative that best completes the statement or answer	s the a	nuestion
WIGHT LE CHOICE.	Choose the one afternative that best completes the statement of answer	s the t	question

1) At what velocity (m/s) must a 20.0 g object be moving in order to possess a kinetic energy of 1.00 J?					
A) 100×10^2	B) 1.00	C) 10.0	D) 1.00×10^3	E) 50.0	
A) adding heat B) adding heat C) withdrawing	to the system to the system and has heat from the syste ystem do work on the			ngs	2)
a system? (A) The system § B) The system § C) The system I D) The system I	gains heat and has w gains heat and does oses heat and has w	s would always result work done on it by the work on the surround ork done on it by the work on the surround	surroundings. lings. surroundings.	nternal energy of	3)
4) The value of ΔE for is kJ.	or a system that perf	orms 13 kJ of work or	n its surroundings and	l loses 9 kJ of heat	4)
A) -13	B) 22	C) -22	D) 4	E) -4	
5) Which one of the f (A) Both A and (B) water freezing (C) ice melting (D) boiling soup (E) Hydrochlori	c) ng	thermic process? ydroxide are mixed a	t 25°C: the temperati	ure increases.	5)
6) Of the following, w A) w B) H C) q D) heat E) none of the a		function?			6)
7) The internal energy can be increased by					
(a) transferring heat from the surroundings to the system (b) transferring heat from the system to the surroundings (c) doing work on the system					
A) b and c	B) a only	C) a and c	D) b only	E) c only	

8) A	ΔH corr	responds to an	process.			8) _	
,	A) positive, exother		1			, -	
	B) zero, exothermic	2					
	C) zero, endotherm	iic					
	D) positive, endoth	ermic					
	E) negative, endoth	nermic					
9) F	or a given process at	constant pressure,	ΔH is negative. The	s means that the pro	ocess is	9) _	
-	A) endothermic						
	B) a state function						
	C) equithermic						
	D) energy						
	E) exothermic						
10) V	Vhich of the followin	g statements is fals	e?			10)	
,		-	_ is equal in magnitud	de, but opposite in si	gn, to the enthalpy	, ,	
	change for the re	-	1 0				
	B) Enthalpy is an ir	ntensive property.					
	C) The enthalpy ch	ange for a reaction	depends on the state	e of the reactants and	d products.		
	D) Internal energy i						
	E) The enthalpy of	a reaction is equal	to the heat of the rea	ction.			
11) <i>A</i>	A chemical reaction th		the surroundings is	said to be	_ and has a	11)	
_		stant pressure.					
	A) endothermic, po						
	B) endothermic, ne C) exothermic, nego	_					
	D) exothermic, posi						
	E) exothermic, neu						
	z) exothermie, neu						
12) L	Jnder what condition	ı(s) is the enthalpy	change of a process	equal to the amount	of heat transferred	12)	
	r out of the system?	17	0 1	1		, .	
	(a) temperature is						
	(b) pressure is cor						
	(c) volume is cons	stant					
	A) a only	B) b only	C) c only	D) b and c	E) a and b		
13) T	he units of of specific	c heat are	·			13)	
	A) J/g -K or J/g - $^{\circ}C$						
	B) g -K/J or g - $^{\circ}$ C/J						
	C) J/K or J/°C						
	D) K/J or °C/J						
	E) J/mol						
14) <i>A</i>	sample of calcium o	carbonate [CaCO3 ((s)] absorbs 45.5 J of	heat, upon which th	e temperature of	14)	
tl	he sample increases f	rom 21.1 °C to 28.5	°C. If the specific he	eat of calcium carbor	nate is 0.82 J/g-K,		
	what is the mass (in g				* 0		
	A) 410		C) 5.0×10^3	D) 75	F) 3.7		

15) An 8.29 g sample of calcium carbonate [CaCO ₃ (s)] absorbs 50.3 J of heat, upon which the					15)	
temperature of the sample increases from 21.1 °C to 28.5 °C. What is the specific heat of calcium carbonate?						
A) 2.2	B) 1.1	C) .63	D) 4.2	E) .82		
16) The temperature of a 35.2 g sample of iron increases from 23.7 °C to 29.5 °C. If the specific heat of iron is 0.450 J/g-K, how many joules of heat are absorbed?						
				-		
A) 0.450	B) 92	C) 1.1 x 10 ³	D) 4.3	E) 1100		
17) Which of the following	~				17)	
A) If a reaction is on the enthalpy ch		series of steps, the ΔH for d	r the reaction will	l equal the product of		
B) The ΔH for a particle.	•	ward direction is equal t	to the ΔH for the J	process in the reverse		
direction.	1 1	.1 1 . 1	.1 1	1 ,		
		on the physical states of		•		
enthalpy chang		series of steps, the ΔH fo	r the reaction will	requar the sum of the		
		ward direction is equal i	n magnitude and	opposite in sign to		
		everse direction.	ar magnitude and	opposite in sign to		
18) Of the following, ΔH	$[\epsilon^{\circ}]$ is not zero fo	r			18)	
A) F ₂ (s)	II 15 <u>1101</u> Zero 10	·			10)	
B) N ₂ (g)						
C) C (graphite)						
D) O ₂ (g)						
E) Cl ₂ (g)						
19) Consider the following two reactions:					19)	
,	O				/	
A →	2B ΔF	$H^{\circ}_{rxn} = 456.7 \text{ kJ/mol}$				
A →	C ΔF	$H^{\circ}_{rxn} = -22.1 \text{kJ/mol}$				
Determine the enthal	lpy change for t	he process:				

$$2B \rightarrow C$$

- A) 478.8 kJ/mol

- B) 434.6 kJ/mol C) -478.8 kJ/mol D) -434.6 kJ/mol
- E) More information is needed to solve the problem.

20) For the species in the	ne reaction below, Δ]	H₅° is zero for			20)
	H ₂ (g) + 8PF ₃ (g) →		·		,
A) HCo(PF ₃) ₄ (I) B) Co (s) C) PF ₃ (g) D) H ₂ (g) E) both Co(s) and					
B) 2Ca (s) + O ₂ C) 2C (graphite) D) 3Mg (s) + N ₂	$H_2(g) \to C_2H_4(g)$)	I° _{rxn} equal to ΔH _f ° fo	r the product?	21)
C) 2 H ₂ (g) + C	$(g) \rightarrow 2 \text{ NO } (g)$ $(2 \text{ O}_2 (g) \rightarrow \text{H}_2\text{O}_2 (l)$ $(2 (g) \rightarrow 2 \text{ H}_2\text{O } (l))$ $(2 (g) \rightarrow 2 \text{ H}_2\text{O } (g))$	s is the value of ΔH	l° _{rxn} equal to ΔH° _f fo	r the product?	22)
23) With reference to enthalpy changes, the term standard conditions means (a) $P=1$ atm (b) some common temperature, usually 298 K (c) $V=1$ L A) a only B) b only C) c only D) a and c E) a and b					23)
24) Fuel values of hydrocompounds has the A) C ₂ H ₆	highest fuel value?	s the H/C atomic rat $^{\circ}$ C) $^{\circ}$ C ₆ H ₆	io increases. Which o	of the following $E) C_2H_2$	24)

25) _____

25) Which one of the choices below is <u>not</u> considered a fossil fuel?

A) anthracite coalB) natural gasC) crude oilD) hydrogenE) petroleum