Name

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The balanced mo	lecular equation for	complete neutralizat	ion of H2SO4 by KOF	I in aqueous	1)	
A) H ₂ SO ₄ (aq)	 + 2KOH (aq) → 2H	I2O (l) + K2SO4 (aq)			
B) H ₂ SO ₄ (aq)	+ 2OH ⁻ (ag) \rightarrow 2H	$120(1) + SO_4^{2-}(aq)$, ,			
C) $2H^+$ (ag) +	$2KOH (ag) \rightarrow 2H_2OH$	$(1) + 2K^+ (aq)$				
D) $2H^{+}(aq) +$	$2 \cap H^{-}(aq) \rightarrow 2 H_{2} \cap H_{2}$	(1)				
E) H ₂ SO ₄ (aq)	+ 2KOH (aq) → 2H ₂ C	$H_2O(l) + K_2SO_4(s)$				
2) Which combination	on will produce a pr	ecipitate?			2)	
A) NaCl (aq) at	nd HC ₂ H ₃ O ₂ (aq)					
B) AgNO ₃ (aq) and Ca(C ₂ H ₃ O ₂) ₂	(aq)				
C) NaOH (aq)	and HCl (aq)					
D) NaOH (aq) E) NH (OH (ac)	and $Fe(INO_3)_2$ (aq)					
L) 1114011 (at	(aq)					
3) A compound was aqueous solution following cations	of this compound re- would form a preci-	in water. It was also esulted in the formati	o found that addition of on of carbon dioxide.	of acid to an Which one of the	3)	
A) Rb+	B) Cr ³⁺	C) Na+	D) NH ₄ +	E) K+		
4) Which of these m	etals will be oxidize	d by the ions of coba	lt?		4)	
A) silver	B) tin	C) iron	D) nickel	E) copper	-,	
5) Based on the activ	vity series, which on	e of the reactions belo	ow will occur?		5)	
A) $Zn(s) + Mi$	$nI_2 (aq) \rightarrow ZnI_2 (aq)$	+ Mn (s)				
B) 3FeBr ₂ (aq)	+ 2Au (s) \rightarrow 3Fe (s)) + 2AuBr3 (aq)				
C) 2AgNO ₃ (a	q) + Pb (s) \rightarrow 2Ag (s	s) + $Pb(NO_3)_2$ (aq)				
D) $3Hg(1) + 2$	$Cr(NO_3)_3 (aq) \rightarrow 3F$	$rac{1}{3}(NO_{3})_{2} + 2Cr(s)$				
E) SnCl ₂ (aq)	+ $Cu(s) \rightarrow Sn(s)$ +	CuCl ₂ (aq)				
6) Which of the following is an oxidation-reduction reaction?						
A) HCI $(aq) +$	NaOH (aq) \rightarrow H ₂ O	(l) + NaCl (aq)				
B) H_2CO_3 (aq	$+ Ca(NO_3)_2 (aq)$	\rightarrow 2HNO3 (aq) + Ca	CO3 (s)			
$C_{J} C_{U} (S) + 2F$	$\operatorname{AginU3}(\operatorname{aq}) \to 2\operatorname{Ag}($	$s_1 + Cu(INO3)2$ (aq)	NaCaHaOa(aa)			
E) $A = NO2$	$HC1(aq) + 1Na_2504$	$ay \rightarrow DasO4(s) + 2$	aC2113O2(aq)			
E) AginO3 (aq	$j + incl(aq) \rightarrow Agc$	л (s) + піхоз (aq)				

Answer the following six questions by showing all of your calculations in the space provided.

$(\Delta) 2.75$	B) 107	C) 50.0	D) 350	F) 45 0	
nj 2.73	107	CJ 50.0	0,000	E) 4 0.0	
Which solution h	has the same number	of moles of KCl as 7	5.00 mL of 0.250 M s	olution of KCl?	8)
A) 100 mL of (0.0500 M solution of	KCl		siduon of Ref.	0)
B) 25.0 mL of (C) 129 mL of (0.175 M solution of k).145 M solution of K	KCI ICI			
D) 20.0 mL of	0.200 M solution of k	KCl			
E) 50.0 mL of	U.125 M solution of F				
What volume (m	L) of 7.48 × 10 ⁻² M p	perchloric acid can be	e neutralized with 11	5 mL of 0.244 M	9)
What volume (m sodium hydroxic A) 750	L) of 7.48 × 10− ² M p de? B) 8.60	perchloric acid can be C) 188	e neutralized with 11 D) 125	5 mL of 0.244 M E) 375	9)
What volume (m sodium hydroxic A) 750	L) of 7.48 × 10− ² M p de? B) 8.60	perchloric acid can be C) 188	e neutralized with 11 D) 125	5 mL of 0.244 M E) 375	9)
What volume (m sodium hydroxic A) 750	L) of 7.48 × 10− ² M p de? B) 8.60	perchloric acid can be C) 188	e neutralized with 11 D) 125	5 mL of 0.244 M E) 375	9)
What volume (m sodium hydroxic A) 750	L) of 7.48 × 10− ² M p de? B) 8.60	perchloric acid can be C) 188	e neutralized with 11 D) 125	5 mL of 0.244 M E) 375	9)
What volume (m sodium hydroxic A) 750	L) of 7.48 × 10− ² M p de? B) 8.60	perchloric acid can be C) 188	e neutralized with 11 D) 125	5 mL of 0.244 M E) 375	9)
What volume (m sodium hydroxic A) 750	L) of 7.48 × 10− ² M p de? B) 8.60	perchloric acid can be C) 188	e neutralized with 11 D) 125	5 mL of 0.244 M E) 375	9)
What volume (m sodium hydroxic A) 750 What volume (m	L) of 7.48 × 10 ⁻² M p de? B) 8.60 L) of a concentrated	perchloric acid can be C) 188 solution of magnesiu	e neutralized with 11 D) 125 111 D) 125	5 mL of 0.244 M E) 375	9)
What volume (m sodium hydroxic A) 750 What volume (m 350. mL to make	L) of 7.48 × 10 ⁻² M p le? B) 8.60 L) of a concentrated a 2.75 M solution of	perchloric acid can be C) 188 solution of magnesiu magnesium chloride	e neutralized with 11 D) 125 1m chloride (9.00 M) ?	5 mL of 0.244 M E) 375 must be diluted to	9)