MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers	the question.	
1) Lattice energy is	1)	
A) the energy required to convert a mole of ionic solid into its constituent ions in the	gas phase	
B) the sum of electron affinities of the components in an ionic solid		
 C) the energy required to produce one mole of an ionic compound from its constituent in their standard states 	nt elements	
D) the sum of ionization energies of the components in an ionic solid		
E) the energy given off when gaseous ions combine to form one mole of an ionic solid	i	
2) The type of compound that is most likely to contain a covalent bond is	2)	
A) a solid metal		
B) one that is composed of a metal from the far left of the periodic table and a nonme far right of the periodic table	tal from the	
C) one that is composed of only nonmetals		
D) held together by the electrostatic forces between oppositely charged ions		
E) There is no general rule to predict covalency in bonds.		
3) In which of the molecules below is the carbon-carbon distance the shortest?	3)	
A) H ₃ C-CH ₃		
B) $H_2C=CH_2$		
C) H-C≡C-H		
D) H ₃ C-CH ₂ -CH ₃		
E) H ₂ C=C=CH ₂		
4) The Lewis structure of N ₂ H ₂ shows	4)	
 A) each nitrogen has one nonbonding electron pair B) each hydrogen has one nonbonding electron pair C) a nitrogen-nitrogen triple bond D) each nitrogen has two nonbonding electron pairs E) a nitrogen-nitrogen single bond 		
5) In the nitrite ion (NO ₂ ⁻),	5)	
A) both bonds are single bonds		
B) there are 20 valence electrons		
C) one bond is a double bond and the other is a single bond		
D) both bonds are the sameE) both bonds are double bonds		
6) Record on the actat rule haven will most likely forms a sign	6)	
6) Based on the octet rule, boron will most likely form a ion.	6)	—
A) B^{3-} B) B^{2-} C) B^{2+} D) B^{+} E) B ³⁺	
7) A valid Lewis structure of cannot be drawn without violating the octet rule.	7)	
A) CO_2 B) ICl_5 C) SO_2 D) SiF_4 E) NI ₃	

_