Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Aromatic Compounds: Hückel Rule

- States that a molecule can be aromatic only if:
	- It has a planar, monocyclic system of conjugation
	- It contains a total of $4n + 2 \pi$ electrons
		- $n = 0, 1, 2, 3...$
- Antiaromatic if 4n π electrons are considered

ELECTROPHILIC AROMATIC SUBSTITUTION

Electrophilic Aromatic Substitution

- Electrophilic aromatic substitution
	- Most common reaction of aromatic compounds
	- An electrophile substitutes for an hydrogen in an aromatic ring
	- Used to test for aromaticity

Electrophilic Aromatic Substitution

- benzene's pi electrons are available to attack a strong electrophile to give a carbocation
- Resonance-stabilized carbocation is called a *sigma complex* because the electrophile is joined to the benzene ring by a new sigma bond
- Aromaticity is regained by loss of a proton

Electrophilic Aromatic Substitution: Mechanism

Step 1: Attack on the electrophile forms the sigma complex.

© 2013 Pearson Education, Inc.

Step 2: Loss of a proton gives the substitution product.

Electrophilic Aromatic Substitution: Halogenation

• Bromine, chlorine, iodine, and fluorine can produce aromatic substitution with the addition of other reagents to promote the reaction

Electrophilic Aromatic Substitution: Bromination

In the bromination of benzene a catalyst, such as FeBr₃, is used

Electrophilic Aromatic Substitution: Bromination Preliminary Step

- Electrophile must be activated before electrophilic aromatic substitution can occur
- A strong Lewis acid catalyst, such as $FeBr₃$, should be used

Electrophilic Aromatic Substitution: Bromination Mechanism

Step 1: Electrophilic attack and formation of the sigma complex.

@ 2013 Pearson Education, Inc.

Step 2: Loss of a proton to give the products.

REMEMBER

Note that the three resonance forms of the sigma complex show the positive charge on the three carbon atoms ortho and para to the site of substitution.

Electrophilic Aromatic Substitution: Bromination

- Stability of the intermediate in electrophilic aromatic substitution is lesser than that of the starting benzene ring
	- *Reaction of an electrophile is endergonic, possesses substantial activation energy, and comparatively slow* ¹²

Electrophilic Aromatic Substitution: Chlorination

- Chlorination is similar to bromination
- Catalyst that can be used
	- $-$ AlCl₃ is most often used
	- $-$ FeCl₃ is used often
- Reaction used in numerous pharmaceutical agents

Electrophilic Aromatic Substitution: Iodination

• Iodination requires an acidic oxidizing agent to produce iodide cation

– Nitric acid, to produce iodide cation.

 $I_2 + H_2O_2 \longrightarrow 2 H-O-I$ or $I_2 + CuCl_2 \longrightarrow I-I-Cu$ = "I^{+"} $\begin{array}{|c|c|}\n\hline\nI^+ & \Pi_2 + \text{CuCl}_2\n\end{array}\n\qquad\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\qquad\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\qquad\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\qquad\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\qquad\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\qquad\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\qquad\n\begin{array}{|c|c|}\n\hline\n\end{array}\$ $\overrightarrow{I_2 + CuCl_2}$ **Benzene** Iodobenzene (65%)

2016 Cengage Learning

Electrophilic Aromatic Substitution: Fluorination

• Fluorination requires F^+ bonded to TEDA-BF₄ with a coordinate covalent bond

Electrophilic Aromatic Substitution: Natural Halogenations

- Widely found in marine organisms
- Occurs in the biosynthesis of thyroxine in

Thyroxine (a thyroid hormone)

Worked Example

- Monobromination of toluene gives a mixture of three bromotoluene products
	- Draw and name them

• Solution:

Electrophilic Aromatic Substitution: Nitration

- Sulfuric acid acts as a catalyst, allowing the reaction to be faster and at lower temperatures.
- HNO₃ and H₂SO₄ react together to form the electrophile of the reaction: nitronium ion $(\overline{NO_2}^+)$.

Electrophilic Aromatic Substitution: Preliminary Step of Nitration

• Preliminary step is formation of the nitronium ion

Electrophilic Aromatic Substitution: Nitration Mechanism

Step 1: Formation of the sigma complex.

Step 2: Loss of a proton gives nitrobenzene.

Electrophilic Aromatic Substitution: Reduction of the Nitro Group

• Reduce the nitro to an amino group

– Treat with zinc, tin, or iron in dilute acid

• Best method for adding an amino group to a aromatic ring

Electrophilic Aromatic Substitution: Sulfonation

- Sulfur trioxide (SO_3) is the electrophile in the reaction.
- A 7% mixture of SO_3 and H_2SO_4 is commonly referred to as "fuming sulfuric acid."
- The $-SO₃H$ group is called a *sulfonic acid*.

Electrophilic Aromatic Substitution: Sulfonation

sulfur trioxide, a powerful electrophile

@ 2013 Pearson Education, Inc.

- Sulfur trioxide
	- Strong electrophile
	- In resonance with three sulfonyl bonds
		- Draws electron density away from the sulfur atom

Electrophilic Aromatic Substitution: Sulfonation Mechanism

- Benzene attacks sulfur trioxide, forming a sigma complex
- Loss of a proton on the tetrahedral carbon and reprotonation of oxygen gives benzenesulfonic acid

Electrophilic Aromatic Substitution: Desulfonation

- Sulfonation is reversible
- Sulfonic acid group is removed from an aromatic ring by heating in dilute sulfuric acid

Electrophilic Aromatic Substitution: Desulfonation Mechanism

@ 2013 Pearson Education, Inc.

- Desulfonation reaction
	- A proton adds to the ring (the electrophile)
	- Loss of sulfur trioxide gives back benzene

Electrophilic Aromatic Substitution: Hydroxylation

- Direct hydroxylation of an aromatic ring is difficult in the laboratory
- Usually occurs in biological pathways

Worked Example

- Propose a mechanism for the electrophilic fluorination of benzene with F-TEDA-BF $_A$
- Solution:

- The pi electrons of benzene attack the fluorine of F- $TEDA-BF₄$
	- The nonaromatic intermediate loses –H to give the fluorinated product

ALKYLATION AND ACYLATION OF AROMATIC RINGS

Alkylation of Aromatic Rings: Friedel-Crafts Reaction

- **Alkylation**: Introducing an alkyl group onto the benzene ring
	- Also called the **Friedel-Crafts reaction**
	- Aromatic compound is treated with an alkyl chloride and a Lewis acid
		- Alkyl halide reacts with a Lewis acid and produces a carbocation which is the electrophile

$$
\begin{array}{|c|c|c|c|}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\text{Lewis acid} \\
\hline\n\text{(AICl}_3, \text{FeBr}_3, \text{etc.})\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\text{R} \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\text{H} - \text{X} \\
\hline\n\end{array}
$$

@ 2013 Pearson Education, Inc.

Alkylation of Aromatic Rings: Friedel-Crafts Reaction Mechanism

Alkylation of Aromatic Rings: Friedel-Crafts Reaction Limitations

- 1. Only alkyl halides can be used (F, Cl, I, Br)
	- High energy levels of aromatic and vinylic halides are not suitable to Friedel-Crafts requirements
- 2. Not feasible on rings containing an amino group substituent or a strong electronwithdrawing group

$$
+ R-X \xrightarrow{\text{AICl}_3} \text{NO reaction} \qquad \text{where } Y = -\overset{+}{\text{NR}}_3, -\text{NO}_2, -\text{CN},
$$

$$
-SO_3H, -CHO, -COCH_3,
$$

$$
-CO_2H, -CO_2CH_3
$$

$$
(-NH_2, -NHR, -NR_2)
$$

Alkylation of Aromatic Rings: Friedel-Crafts Reaction Limitations

- 3. Termination of the reaction allowing a single substitution is difficult
	- Polyalkylation occurs

Alkylation of Aromatic Rings: Friedel-Crafts Reaction Limitations

- 4. Occasional skeletal rearrangement of the alkyl carbocation electrophile
	- Occurs more often with the use of a primary alkyl halide $CH₃$

Solved Problem 2

Devise a synthesis of *p*-nitro-*t*-butylbenzene from benzene.

Solution

To make *p*-nitro-*t*-butylbenzene, we would first use a Friedel–Crafts reaction to make *t*butylbenzene. Nitration gives the correct product. If we were to make nitrobenzene first, the Friedel–Crafts reaction to add the *t*-butyl group would fail.

Acylation of Aromatic Rings: Friedel-Crafts Reaction

- Acylation: An acyl group substitiution
	- Created by reacting an aromatic ring, a carboxylic acid chloride and $AICI₃$

Acylation of Aromatic Rings: Friedel-Crafts Reaction

- Acyl chloride is used in place of alkyl chloride.
- The product is a phenyl ketone that is less reactive than benzene.

Acylation of Aromatic Rings: Friedel-Crafts Reaction Mechanism

Step 1: Formation of the acylium ion (resonance of carbocation prevents rearrangements)

Step 2: Electrophilic attack to form the sigma complex

Acylation of Aromatic Rings: Friedel-Crafts Reaction Mechanism (Continued)

Step 3: Loss of a proton to form the product

Acylation of Aromatic Rings: Friedel-Crafts Reaction Mechanism

• Have the same limitations on the aromatic substrate

REMEMBER

Friedel–Crafts acylations are generally free from rearrangements and multiple substitution. They do not go on strongly deactivated rings, however.

Alkylation of Aromatic Rings: Natural Friedel-Crafts Reaction

- Natural aromatic alkylations are a part of many biological pathways
	- Catalyzing effect of $AICI₃$ is replaced by organidiphosphate dissociation

Alkylation of Aromatic Rings: Natural Friedel-Crafts Reaction Example

Biosynthesis of Phylloquinone from 1,4-dihydroxynaphthoic Acid

Worked Example

• Identify the carboxylic acid that might be used in a Friedel-Crafts acylation to prepare the following acylbenzene

Worked Example

- Solution:
	- Identification of the carboxylic acid chloride used in the Friedel-Crafts acylation of benzene involves:
		- Breaking the bond between benzene and the ketone carbon
		- Using a –Cl replacement

SUBSTITUENT EFFECTS IN ELECTROPHILIC SUBSTITUTIONS

• Substituents affect

– Reactivity of the aromatic ring

- Reactivity of the aromatic ring is affected
	- Substitution can result in an aromatic ring with a higher or a lower reactivity than benzene

- Substituents affect
	- Reactivity of the aromatic ring
	- Orientation of the reaction
		- Initial substituent on ring determines placement of latter substituents

- Substituent initially present on benzene ring
	- Activating groups
		- Speed up the reaction
		- Groups that donate electron density to the ring
		- Direct substituents to ortho/para positions
		- Three types of ortho/para directors
			- Alkyl groups stabilize the aromatic ring by providing electron density
			- Pi bonds stabilize the aromatic ring by providing electron density through resonance
			- Lone pairs stabilize the aromatic ring by providing resonance
		- -OH group is an ortho- and para- directing activator

- Substituent initially present on benzene ring
	- Deactivating groups
		- Slow down the reaction
		- Groups that withdraw electron density from the ring
		- Direct substituents to
			- Ortho/para positions: only halogens
				- » Weakly deactivating
			- Meta positions
				- » Groups are strongly deactivating
				- » -CHO (carbonyl group)

Worked Example

- Predict the major product in the nitration of bromobenzene
- Solution:

– Even though bromine is a deactivator, it is used as an ortho-para director

ACTIVATING OR DEACTIVATING EFFECTS

Activating or Deactivating Effects

- Activating groups contribute electrons to the aromatic ring
	- The ring possesses more electrons
	- The carbocation intermediate is stabilized
	- Activation energy is lowered
- Deactivating groups withdraw electrons from the aromatic ring
	- The ring possesses lesser electrons
	- The carbocation intermediate is destabilized
	- Activation energy is increased

Activating or Deactivating Effects

- Electron withdrawal or donation by a substituent group is controlled by
	- **Inductive effects**

Origins of Substituent Effects

- **Inductive effect**: Withdrawal or donation of electrons by a sigma bond due to electronegativity
	- Prevalent in halobenzenes and phenols

Inductive electron withdrawal

Inductive electron donation

Activating or Deactivating Effects

- Electron withdrawal or donation by a substituent group is controlled by
	- Inductive effects
	- **Resonance effects**

Resonance Effects - Electron Withdrawal

• **Resonance effect**: Withdrawal or donation of electrons through a π bond due to the overlap of a *p* orbital on the substituent with a *p* orbital on the aromatic ring

Resonance electronwithdrawing group

Resonance Effects - Electron Withdrawal

• **Resonance effect**: Withdrawal or donation of electrons through a π bond due to the overlap of a *p* orbital on the substituent with a *p* orbital on the aromatic ring

Resonance electrondonating groups

2016 Cengage Learning

Activating or Deactivating Effects

- Electron withdrawal or donation by a substituent group is controlled by
	- Inductive effects
	- Resonance effects
- If the two effects act in opposite direction, the stronger on dominates
	- Hydroxyl, alkoxyl and amino groups are activators because they have a stronger electron-donating resonance as compared to their weak inductive effect
	- Halogens are deactivators because their stronger inductive effect as compared to their resonance effects

Worked Example

• Explain why Freidel-Crafts alkylations often give polyalkylation substitution but Freidel-Crafts acylations do not

Worked Example

- Solution
	- An acyl substituent is deactivating
		- Once an aromatic ring has been acylated, it is less reactive to further substitution
	- An alkyl substituent is activating, however, an alkyl-substituted ring is more reactive than an unsubstituted ring
		- Polysubstitution occurs readily

ORTHO- AND PARA-DIRECTING ACTIVATORS

• Alkyl groups possess an electron-donating inductive effect

Ortho attack

• *Ortho* and *para* attacks are preferred because their resonance structures include one tertiary carbocation

Meta attack

• When substitution occurs at the meta position, the positive charge is not delocalized onto the tertiary carbon, and the methyl group has a smaller effect on the stability of the sigma complex

• Carbocation in ortho and para position are stabilized by inductive effect of the methyl group and form faster and are more stable than the meta group $\frac{1}{68}$

Ortho- and Para-Directing Activators: OR, OH and $NH₂$

• Hydroxyl, alkoxyl, and amino groups possess a strong, electron-donating resonance effect

Ortho- and Para-Directing Activators: OR, OH and $NH₂$ $OCH₃$ $OCH₃$ $OCH₃$ $OCH₃$ $NO₂$ $HNO₃$ $\boldsymbol{+}$ $^{+}$ H_2SO_4 NO_{2} $NO₂$

 p -nitroanisole anisole o -nitroanisole m -nitroanisole $(31%)$ (2%) $(67%)$ @ 2013 Pearson Education, Inc.

- Anisole undergoes nitration about 10,000 times faster than benzene and about 400 times faster than toluene
- This result seems curious because oxygen is a strongly electronegative group, yet it donates electron density to stabilize the transition state and the sigma complex

Ortho- and Para-Directing Activators: OR, OH and $NH₂$

Ortho attack

 $+{\rm \ddot OCH}_3$ $: \overset{\cdot \cdot }{\text{OCH}}_3$ $:$ OCH₃ $:$ OCH₃ \overline{OCH}_3 \overline{H} $\overleftrightarrow{NO_2}$ NO₂ especially stable Para attack $: \ddot{Q}CH_3$ $: \ddot{Q}CH_3$ $: \overset{\cdot \cdot }{\mathbf{OCH}}_{3}$ $: \overset{\cdot \cdot }{\text{OCH}}_{3}$ $+ \text{OCH}_3$ H $NO₂$ $H \quad NO₂$ $NO₂$ H $NO₂$ H $NO₂$ especially stable

Resonance stabilization is provided by a pi bond between the $-OCH₃$ substituent and the ring

Ortho- and Para-Directing Activators: OR, OH and $NH₂$

Meta attack

• Resonance forms show that the methoxy group cannot stabilize the sigma complex in the meta substitution.
Ortho- and Para-Directing Activators: OR, OH and $NH₂$

• The ortho and para intermediates are lower in energy than the meta intermediate and form faster

Summary of Activators

© 2013 Pearson Education, Inc.

Worked Example

• Explain why acetanilide is less reactive than aniline toward electrophilic substitution

Acetanilide

Worked Example

• Solution:

substitution

ORTHO- AND PARA-DIRECTING DEACTIVATORS

- Halogens are deactivators since they react slower than benzene
- Halogens are ortho, para-directors because the halogen can stabilize the sigma complex

• *Inductive effect*: Halogens are deactivating because they are electronegative and can withdraw electron density from the ring along the sigma bond

• *Resonance effect*: The lone pairs on the halogen can be used to stabilize the sigma complex by resonance

- Caused by the dominance of the stronger electron-withdrawing inductive effect over their weaker electron-donating resonance effect
	- Electron donating resonance effect is present only at the ortho and para positions

META-DIRECTING DEACTIVATORS

Meta-Directing Deactivators

- The meta intermediate possesses three favourable resonance forms
	- Ortho and para intermediates possess only two

Meta-Directing Deactivators: Ortho Attack of Acetophenone

- In ortho and para substitution of acetophenone, one of the carbon atoms bearing the positive charge is the carbon attached to the partial positive carbonyl carbon.
- Since like charges repel, this close proximity of the two positive charges is especially unstable

Meta-Directing Deactivators: Meta Attack on Acetophenone

Meta attack

• The meta attack on acetophenone avoids bearing the positive charge on the carbon attached to the partial positive carbonyl

Meta-Directing Deactivators: Nitration of Nitrobenzene

- Electrophilic substitution reactions for nitrobenzene are 100,000 times slower than for benzene
- The product mix contains mostly the meta isomer, and only small amounts of the ortho and para isomers

Meta-Directing Deactivators: Ortho Substitution of Nitrobenzene

Ortho attack

- The nitro group is a strongly deactivating group when considering its resonance forms
- The nitrogen always has a formal positive charge
- Ortho or para addition will create an especially unstable intermediate

Meta-Directing Deactivators: Meta Substitution on Nitrobenzene

Meta attack

• Meta substitution will not put the positive charge on the same carbon that bears the nitro group

Meta-Directing Deactivators: Energy Diagram

reaction coordinate -

© 2013 Pearson Education, Inc.

Meta-Directing Deactivators

- Most electron-withdrawing groups are deactivators and meta-directors
- The atom attached to the aromatic ring has a positive or partial positive charge
- Electron density is withdrawn inductively along the sigma bond, so the ring has less electron density than benzene, and will be slower to react

Worked Example

- Draw resonance structures for the intermediates from the reaction of an electrophile at the ortho, meta, and para positions of nitrobenzene
	- Determine which intermediates are most stable

Worked Example

• Solution:

Substituent Effects in Electrophilic Aromatic Substitution

REMEMBER

Remember which substituents are activating and which are deactivating. Activators are ortho, para-directing, and deactivators are meta-directing, except for the halogens.

TRISUBSTITUTED BENZENES

Trisubstituted Benzenes: Additivity of **Effects**

- Additivity effects are based on three rules:
	- The situation is straightforward if the directing effects of the groups reinforce each other

Trisubstituted Benzenes: Additivity of **Effects**

- If the directing effects of two groups oppose each other, the more powerful activating group decides the principal outcome
	- Usually gives mixtures of products

Trisubstituted Benzenes: Additivity of **Effects**

- Further substitution is rare when two groups are in a meta-disubstituted compound as the site is too hindered
	- An alternate route must be taken in the preparation of aromatic rings with three adjacent substituents

Worked Example

• Determine the position at which electrophilic substitution occurs in the following substance

Worked Example

• Solution:

- Both groups are ortho-para directors and direct substitution to the same positions
	- Attack does not occur between the two groups for steric reasons

NUCLEOPHILIC AROMATIC SUBSTITUTION

Nucleophilic Aromatic Substitution

• Aryl halides with electron-withdrawing substituents can also undergo a nucleophilic substitution reaction

Nucleophilic Aromatic Substitution

- Not very common
- Uses
	- Reaction of proteins with Sanger's reagent results in a label being attached to one end of the protein chain
	- Reaction is superficially similar to the $S_{N}1$ and $S_{N}2$ nucleophilic substitutions
		- Aryl halides are inert to both S_N1 and S_N2 conditions

Nucleophilic Aromatic Substitution: Mechanism

NO₂ Nucleophilic addition of hydroxide ion to the electron-poor aromatic ring takes place, yielding a stabilized carbanion intermediate. The carbanion intermediate undergoes elimination of chloride ion in a second 2 step to give the substitution product. OH CI^{-} $NO₂$

Nucleophilic Aromatic Substitution

- A nucleophile replaces a leaving group on the aromatic ring
- This is an addition–elimination reaction
- Electron-withdrawing substituents activate the ring for nucleophilic substitution

Nucleophilic Aromatic Substitution: Nitrochlorobenzenes

Para

Meta

CI

 \neg $+$

107

Differences Between Electrophilic and Nucleophilic Aromatic Substitutions

Electrophilic substitutions

- Favored by electrondonating substituents
- Electron-withdrawing groups cause ring deactivation
	- Electron-withdrawing groups are meta directors
- Replace hydrogen on the ring

Nucleophilic substitutions

- Favored by electronwithdrawing substituents
- Electron-withdrawing groups cause ring activation
	- Electron withdrawing groups are ortho-para directors
- Replace a leaving group
• Propose a mechanism for the preparation of oxyfluorfen, a herbicide, through the reaction between phenol and an aryl fluoride

• Solution:

- Step 1: Addition of the nucleophile
- Step 2: Elimination of the fluoride ion

BENZYNE

Benzyne

- On a general basis, there are no reactions between nucleophiles and halobenzenes that do not have electron withdrawing substituents
	- High temperatures can be used to make chlorobenzene react

Benzyne

- A Diels-Adler reaction occurs when bromobenzene reacts with $KNH₂$ in the presence of a conjugated diene, such as furan
	- Elimination of HBr from bromobenzene forms a **benzyne** as the chemical intermediate

Benzyne

- Benzyne has the electronic structure of a highly distorted alkyne
	- The benzyne triple bond uses *sp2-*hybridized carbon atoms

Side view

Benzyne

Benzyne Reaction: Elimination–Addition

- Reactant is halobenzene with no electronwithdrawing groups on the ring
- Use a very strong base like NaNH₂

Benzyne: Mechanism

- Sodium amide abstracts a proton.
- The benzyne intermediate forms when the bromide is expelled and the electrons on the *sp*² orbital adjacent to it overlap with the empty *sp*² orbital of the carbon that lost the bromide.
- Benzynes are very reactive species due to the high strain of the triple bond

Benzyne: Mechanism Intermediate

REMEMBER

With strong electron-withdrawing groups ortho or para, the nucleophilic aromatic substitution is more likely. Without these activating groups, stronger conditions are required, and the benzyne mechanism is likely.

• Explain why the treatment of *p*-toluene with NaOH at 300°C yields a mixture of two products, but treatment of *m*-bromotoluene with NaOH yields a mixture of two or three products

• Solution:

OXIDATION OF AROMATIC COMPOUNDS

Oxidation of Aromatic Compounds: Alkyl Side Chains

- In the presence of an aromatic ring, alkyl side chains are converted to carboxyl groups through oxidation
	- Alkylbenzene is converted to benzoic acid

Butylbenzene

Benzoic acid (85%)

Oxidation of Aromatic Compounds: Alkyl Side Chains

- Mechanism involves reaction of benzylic C-H bond
	- **No Benzylic Hydrogens, No Reaction**

tert-Butylbenzene

2016 Cengage Learning

Oxidation of Aromatic Compounds : Alkyl Side Chains

- Side-chain oxidation involves a complex mechanism wherein C–H bonds next to the aromatic ring react to form intermediate benzylic radicals
- Analogous side-chain reactions are a part of many biosynthetic pathways

Dopamine

Norepinephrine 124

• Mention the aromatic substance that is obtained if $KMnO₄$ undergoes oxidation with the following substance

• Solution:

– Oxidation takes place at the benzylic position

Oxidation of Aromatic Compounds: Alkylbenzene Side Chain Bromination

• Occurs when an alkylbenzene is treated with *N-*bromosuccinimide (NBS)

Oxidation of Aromatic Compounds: Alkylbenzene Side Chain Bromination

- The reaction of HBr with NBS occurs only at the benzylic position
	- The benzylic radical intermediate is stabilized by resonance
		- The *p* orbital of the benzyl radical overlaps with the ringed π electron system

Oxidation of Aromatic Compounds: Alkylbenzene Side Chain Bromination Mechanism

- Mechanism
	- Abstraction of a benzylic hydrogen atom generate an intermediate benzylic radical
	- Benzylic radical reacts with $Br₂$ to yield product and a Br- radical
	- Br- radical cycles back into reaction to carry on the chain
	- $-$ Br₂ is produced when HBr reacts with NBS

REMEMBER

In predicting reactions on side chains of aromatic rings, consider resonance forms that delocalize a charge or a radical electron onto the ring.

- Styrene, the simplest alkenylbenzene, is prepared for commercial use in plastics manufacture by catalytic dehydrogenation of ethylbenzene
	- Prepare styrene from benzene

Styrene

• Solution:

REDUCTION OF AROMATIC COMPOUNDS

Aromatic Ring Reduction: Catalytic Hydrogenation

- Aromatic rings are inert to catalytic hydrogenation under conditions that reduce alkene double bonds
	- Selectively reduce an alkene double bond in the presence of an aromatic ring

Aromatic Ring Reduction: Catalytic Hydrogenation

- Reduction of an aromatic ring requires either:
	- A platinum catalyst and a pressure of several hundred atmospheres
	- A catalyst such as rhodium or carbon
- Reduction cannot be stopped at an intermediate stage

Aromatic Ring Reduction: Aryl Alkyl Ketones

- An aromatic ring can activate neighboring carbonyl group toward reduction
	- An aryl alkyl ketone can be converted into an alkylbenzene by catalytic hydrogenation over a palladium catalyst

Aromatic Ring Reduction: Aryl Alkyl Ketones

- Aryl alkyl ketone prepared by Friedel-Crafts acylation can be converted into an alkylbenzene
	- Circumvents carbocation rearrangement problems that occur with Friedel-Crafts alkylation

Mixture of two products

Aromatic Ring Reduction: Aryl Alkyl Ketones

- Only aryl alkyl ketones can be converted into a methylene group by catalytic hydrogenation
- Nitro substituents hinder the catalytic reduction of aryl alkyl ketones
	- Nitro group undergoes reduction to form an amino group

- Prepare diphenylmethane, $(Ph)_{2}CH_{2}$, from benzene and an acid chloride
- Solution:

SYNTHESIS OF POLYSUBSTITUTED BENZENES

Synthesis of Polysubstituted Benzenes

- Working synthesis reactions is one of the best ways to learn organic chemistry
- Knowledge on using the right reactions at the right time is vital to a successful scheme
- Ability to plan a sequence of reactions in right order is valuable to synthesis of substituted aromatic rings

- Synthesize *m*-Chloronitrobenzene from benzene
- Solution:
	- In order to synthesize the product with the correct orientation of substituents, benzene must be nitrated before it is chlorinated

Summary

- There are two phases in an electrophilic aromatic substitution reaction:
	- $-$ Initial reaction of an electrophile E^+
	- $-$ Loss of H^{$+$} from the resonance-stabilized carbocation intermediate
- The Friedel-Crafts alkylation and acylation reactions are important electrophilic aromatic substitution reactions that involve the reaction of an aromatic ring with carbocation electrophiles

Summary

- Resonance and inductive effects are the means by which substituents influence aromatic rings
- Nucleophilic aromatic substitution is a reaction that halobenzenes go through and involve an addition of a nucleophile to the ring
- In halobenzenes that are not activated by electron-withdrawing substituents, nucleophilic aromatic substitutions occur by elimination of HX which yields a benzene