Basic Diesel Engine Operation

Basic Diesel Operation

- > The diesel engine will take in more air than a comparable size gasoline engine:
 - Intake manifold vacuum is very low due to minimal inlet restriction (low pressure differential)
 - The intake vacuum may increase significantly if there is a intake restriction
 - Pumping more air allows the engine to run leaner and cooler under all conditions
 - Diesel adjust only fuel injection to maintain engine speed under varying load conditions

Basic Diesel Operation

- ➤ Gasoline engines limit power by controlling the volume of fuel **AND** air:
 - > Throttle plates reduce overall engine efficiency
 - > Pumping losses due to inlet restriction
 - > Air/Fuel ratios adjusted in the intake manifold
- The unregulated Diesel engine air intake system improves:
 - Volumetric efficiency
 - > Thermal efficiency
 - Mechanical efficiency
 - No throttle plate restriction

Diesel Engine Combustion

Diesel Engine Combustion

- Air/Fuel Ratios
 - Power and speed is regulated by controlling only the amount of fuel injected
 - Diesels operate on a wide range of air/fuel ratios (unlike gasoline engines)
 - More Fuel = More Power and RPM

Diesel Combustion

- > Diesel engines produce more power and better fuel economy because:
 - > Diesel fuel contains more heat energy than does gasoline
 - > Diesel fuel releases more energy but at a slower rate
 - ➤ Peak output is produced at lower speed and within a smaller RPM range
 - ➤ Higher compression and combustion* pressures improve engine output efficiency
 - *Combustion Rapid oxidation of fuel producing heat

High Compression Ratios

> Diesel engines need to have very high compression ratios:

The compression ratio of a typical turbocharged truck engine is

approx. 17:1

- > Referred to as compression ignition engine
- ➤ High compression of air creates the heat needed for fuel ignition
- Minimum air temperature in the cylinder is approx. 750 degF (4000 degC) to ignite the fuel and start the combustion process

Diesel Starting Aids

- > Outside air temperature affects the internal cylinder temperature
- > Colder temperatures may require some type of starting aid
 - ➤ Glow Plugs
 - ➤ Intake pre-heater
 - > Ether injection
 - > Engine coolant or lube oil heaters
 - ➤ Auxiliary Power Units (APU)

Fuel Injection

- > High fuel injection pressures are needed:
 - ➤ Injection pressure may exceed 25,000 psi in some applications
 - > This is needed to overcome high internal cylinder pressures
 - Use only OEM methods when identifying the source of high pressure fuel leaks

Horsepower and Torque

- > The amount of fuel injected determines the amount of combustion pressure
 - > Limited by the amount of available oxygen
 - Fuel continues to be injected after the combustion process begins in the cylinder
 - This greatly improves torque and horsepower at lower engine speeds
 - Fuel injection is precisely controlled by the engine ECM governor
 - The engine ECM instantly adjusts the fuel injection to the load placed on the engine

Diesel Combustion

- High pressure fuel injection is required
 - Precise fuel injection occurring at the correct time
 - Injection timing is critical to optimize engine power and fuel economy
 - Prevent engine damage
 - Control engine emissions
 - Prevent lube oil dilution from unburned fuel
 - There is a delay period after fuel is injected to when it begins to burn (lag)
 - This delay period determines the "Effective Timing"

Diesel fuel injection and combustion facts:

- Only the intake air charge is compressed in the cylinder
- > Diesel fuel is injected into this compressed air charge
- Diesel fuel starts to combust rapidly upon mixing with the hot air
- Fuel continues to be injected mixing with hot combustion gases
- Diesel Combustion
- Diesel Combustion Process

The Four Stroke Cycle

- An engine cycle describes one operation, from start to finish
- A stroke is one event in the 4-stroke cycle
- > The specific stroke is determined by the camshaft
- All reciprocating piston engines have four events which must take place
 - Intake
 - Compression
 - Power
 - Exhaust

- Completion of all four needed events constitutes one cycle:
 - The events must occur in the proper sequence
 - One stroke is the movement of the piston from Top Dead Center (TDC) to Bottom Dead Center (BDC) or vice versa
 - > One stroke requires 180° of crankshaft rotation
 - Intake and exhaust strokes can overlap to help expel exhaust gasses

- All modern diesel truck engines are 4-stroke designs:
 - The crankshaft must turn two revolutions (720°) in order to complete the 4-stroke cycle
 - ➤ All diesel truck engines will complete the 4-stroke cycle in 720°
- The once popular Detroit Diesel Corp 2-stroke engine is no longer used in modern truck applications

- Valves can only be open during two of the four strokes – intake and exhaust
 - > The camshaft must turn half as fast as the crankshaft
 - > This is typically accomplished by gear or chain
 - The camshaft will turn one revolution (360°) to complete the four-stroke cycle
 - The camshaft actuates the engine valvetrain
 - Valve Overlap will occur as the exhaust valve is closing and the intake valve is opening
 - Scavenging occurs during Valve Overlap

- The camshaft will determine which of the two possible events occurs during a stroke:
 - The intake and exhaust strokes overlap
 - Intake always follows exhaust during the cycle
 - The exhaust valve will be closing as the intake valve is opening
 - This helps to purge exhaust gases from the cylinder (scavenging)
 - Observing this valve overlap action will determine the correct direction of rotation

Diesel Intake Stroke

- Only the intake air enters the cylinder:
 - > **NOT** the air/fuel charge
 - The downward movement of the piston draws fresh air into the cylinder
 - > The turbocharger can force in more air
 - The exhaust valve remains open at the beginning of the intake stroke
 - The intake valve closes as the piston reaches BDC

Diesel Compression Stroke

- Only the cylinder fresh intake air charge is compressed:
 - > **NOT** the air/fuel charge
 - The upward movement of the piston squeezes the air charge creating heat
 - The combustion chamber is shaped to produce maximum air turbulence
 - Fuel is injected after the air charge is compressed
 - Thorough mixing of fuel and air is critical to proper combustion

Diesel Compression Stroke (cont.)

- Diesel truck engines typically produce compression pressures about 600 PSI
 - The low volatility and ignition qualities of Diesel fuel helps prevent pre-ignition
 - Proper injection timing also helps prevent pre-ignition
 - The higher compression pressure contributes to more heat developed in the cylinder
 - The high compression ratio also causes greater expansion of the burning gases
 - Resulting in higher cylinder combustion pressure deriving most of the available energy from the fuel

Diesel Power Stroke

- High pressure fuel is injected into the engine cylinder near TDC:
 - Near the end of the compression stroke
 - Fuel mixes with the compressed air charge
 - Heat of compression ignites the fuel
 - The quantity of fuel injected is determined by engine speed and load
 - The engine ECM governs the amount of fuel injected based on various inputs

Diesel Power Stroke (cont.)

- High cylinder pressure is maintained longer than in a gasoline engine:
 - This is called the diesel constant pressure power stroke (expansion stroke)
 - Takes advantage of existing cylinder pressure on a greater crank throw angle
 - Fuel continues to be injected causing the gas pressure to peak 5° 20° ATDC
 - This provides more torque at lower RPM's

Diesel Exhaust Stroke

- The hot gases are expelled from the engine cylinder:
 - The exhaust valve opens when the piston is near BDC
 - Upward movement of the piston pushes the hot gases into the exhaust manifold
 - The intake valve opens near TDC drawing fresh, cool air into the cylinder
 - This provides additional cylinder cooling
 - Scavenging occurs when the intake air charge helps push the remaining exhaust out

Diesel Exhaust Stroke (cont.)

- The hot exhaust gas is used to drive the turbocharger:
 - Exhaust energy is captured by the turbine wheel of the turbocharger
 - The turbine wheel drives an impeller wheel compressing the intake air charge
 - Turbochargers capture exhaust energy
 - This action contributes to the volumetric and thermal efficiency of the diesel engine

Cylinder Compression Problems

Low Compression Pressure

- Low Compression could cause:
 - Hard starting
 - Rough idle
 - Low engine power
 - Poor engine performance
 - Poor engine fuel economy
 - Reduced engine power
 - Increased emissions/smoke
 - Cylinder misfire
 - Excessive crankcase pressure

Low Compression (cont.)

- > Poor compression could be caused by:
 - Blown head gasket
 - Burnt valves/seats
 - Cracked cylinder head
 - Damaged compression seals
 - Cracked or worn piston rings
 - Burnt or damaged piston
 - Improper valve timing
 - Bent piston rod
- Internal combustion gas leaks usually occur with low compression problems
- Cylinder compression or leak-down tests can identify poor compression

Low Compression (cont.)

- Root causes of low compression:
 - Overall poor engine maintenance
 - Engine overheating issues
 - Poor quality lube oil
 - Lube system problems
 - Dirt entering air system
 - Cylinder misfire or detonation*
 - Fuel diluted engine oil
 - Improper use of starting fluids

^{*}Violent, uncontrolled combustion that can cause internal engine damage

Companion Cylinders and Engine Rotation

Companion Cylinders

- Engines usually have two pistons which move together on the same plane:
 - > These are called "Companion Cylinders"
 - Piston travel from TDC to BDC can be either intake or power stroke
 - Piston travel from BDC to TDC can be either Compression or exhaust stroke
 - Exception: Engines with odd numbered cylinders do not have companion cylinders
 - Companion Cylinders

Companion Cylinders (cont.)

- > The typical inline 6-cylinder diesel engine firing order is 1-5-3-6-2-4
- > The inline 6-cylinder companion cylinders are 1-6, 2-5, 3-4
- Example: If cylinder #6 is on the exhaust stroke, cylinder #1 is at TDC Compression stroke
- Observing valve overlap can determine the position of two pistons at TDC

Engine Rotation

- Engine rotation is usually determined by observing the crankshaft from the front
- Right-hand (clockwise) rotation is standard on truck engines
 - Some OEM's list engine rotation by flywheel view (CAT)
 - Left-hand (counterclockwise) rotation for special applications

Service Tip: Observing valve overlap can be used to determine correct engine rotation

Engine Construction

Diesel Engine Construction

- Diesel engines have stronger parts and more robust designs:
 - Necessary because of higher pressures and loads
 - May be designed for in-chassis overhauls and major component replacement
 - Allows longer intervals between repair and maintenance
 - Designed for optimum engine life

Diesel Engine Design

- Intake and exhaust efficiency are primary design factors:
 - 4-valve heads are used for higher volumetric efficiency
 - The cross flow design of air intake and exhaust ports in the cylinder head is common
 - Turbochargers are standard on all truck engines
 - Charge-Air-Cooling (CAC) is common in truck applications (may be called Air-To-Air Coolers)
 - The CAC lowers the temperature of the intake air charge improving overall engine efficiency

Cross-Flow Cylinder Head

- Combustion Chambers
 - The combustion chamber is designed to develop maximum cylinder turbulence
 - This improves the mixing of the fuel with the intake air charge
 - Open Chambers All of the cylinder volume is contained in a single space above or in the piston
 - Pre-combustion Chambers have an auxiliary chamber connected to the main chamber

- Open Chambers
 - Improved thermal & volumetric efficiency
 - Do not need glow plugs to start
 - Uses Direct Injection (DI)

- Pre-combustion Chambers
 - Needs glow plugs to start
 - Uses Indirect Injection (IDI)
 - Not typically used in modern Diesel Truck Engine applications

Glow Plugs

- Necessary to start engines equipped with precombustion chambers
- Electrical heating element that is inserted into the pre-combustion chamber
- > Will shut-off shortly after the engine starts
- May cycle on/off during engine warm-up to improve performance & reduce smoke
- May be used in open chamber engines
 - Example: International/Ford Powerstroke
- Engine ECM controlled in most applications

Intake Pre-heaters

- Pre-heaters may be required to start engines in colder temperatures
- Heats the intake air
- An electrical grid placed in the intake manifold
- May be cycled on/off to improve engine performance & reduce smoke
- Controlled by engine electronics

Ether Injection

- A diesel engine may be equipped with an ether injection system
- Used to assist the starting of a diesel engine in cold weather
- Current ether injection systems are usually controlled by an ECM
- **Warning!!** Do not use ether starting fluids on Diesel engines equipped with glow plugs, intake air preheaters or Flamestart (CAT) starting aids

Diesel Engine Starting Aids

Diesel Advantages and Disadvantages

- The Diesel Advantage
 - In truck applications diesel engines have several advantages:
 - Superior fuel economy
 - Greater engine output @ lower RPM's
 - Designed for serviceability
 - Major in-chassis repairs possible
 - Less routine maintenance
 - Less CO emissions
 - Diesel fuel is inherently safer to handle
 - Longer engine life

Diesel Advantages and Disadvantages (cont.)

- The Diesel Disadvantage:
 - Higher initial cost
 - Higher component replacement cost
 - Noise
 - Weight
 - Hard starting in cold weather
 - Two diesel emissions are difficult to control
 - Nitrogen Oxides NOx
 - Particulate Matter PM (soot)

Diesel Engine Usage

- Usage of diesel engines is widespread:
 - Trucks & Automobiles
 - Marine & Ocean Vessels
 - Mining
 - Logging
 - > Oil Drilling
 - Utility companies
 - Military vehicles
 - Farming

Diesel Engine Usage (cont.)

- Electrical power generation
 - Hospitals
 - Shopping centers
 - Highway department
 - Large buildings
 - > Railroad

Diesel & Gas Engine Comparison

- Popular Light Truck Gas Engines
 - Ford Triton V-10 6.8L
 - > 310 HP @ 4250 RPM
 - 425 lb-ft of torque @ 3250 RPM
 - GM Vortec 8100 V8 8.1L
 - > 330 HP @ 4200 RPM
 - 450 lb-ft of torque @ 3200 RPM
 - > Dodge Magnum 5.7L Hemi
 - > 345 HP @ 5400 RPM
 - 375 lb-ft of torque @ 4200 RPM

Diesel & Gas Engine Comparison (cont.)

- Popular Light Duty Diesel Engines
 - Cummins ISB Series (inline 6)
 - > 325 HP @ 2900 RPM
 - 600 lb-ft of torque @ 1600 RPM
 - Ford (Int'l) Power Stroke 6.0L (V8)
 - > 325 HP @ 3300 RPM
 - 560 lb-ft of torque @ 2000 RPM
 - Ford (International) 4.5L (V6)
 - > 200 HP @ 3000 RPM
 - 440 lb-ft of torque @ 1850 RPM