Basic Diesel Engine Operation
Basic Diesel Operation

- The diesel engine will take in more air than a comparable size gasoline engine:
 - Intake manifold vacuum is very low due to minimal inlet restriction (low pressure differential)
 - The intake vacuum may increase significantly if there is an intake restriction
 - Pumping more air allows the engine to run leaner and cooler under all conditions
 - Diesel adjust only fuel injection to maintain engine speed under varying load conditions
Basic Diesel Operation

- Gasoline engines limit power by controlling the volume of fuel AND air:
 - Throttle plates reduce overall engine efficiency
 - Pumping losses due to inlet restriction
 - Air/Fuel ratios adjusted in the intake manifold

- The unregulated Diesel engine air intake system improves:
 - Volumetric efficiency
 - Thermal efficiency
 - Mechanical efficiency
 - No throttle plate restriction
Diesel Engine Combustion
Diesel Engine Combustion

- **Air/Fuel Ratios**
 - Power and speed is regulated by controlling only the amount of fuel injected
 - Diesels operate on a wide range of air/fuel ratios (unlike gasoline engines)
 - **More Fuel = More Power and RPM**
Diesel Combustion

- Diesel engines produce more power and better fuel economy because:
 - Diesel fuel contains more heat energy than does gasoline
 - Diesel fuel releases more energy but at a slower rate
 - Peak output is produced at lower speed and within a smaller RPM range
 - Higher compression and combustion* pressures improve engine output efficiency

*Combustion – Rapid oxidation of fuel producing heat
High Compression Ratios

- Diesel engines need to have very high compression ratios:
 - The compression ratio of a typical turbocharged truck engine is approx. 17:1

- Referred to as compression ignition engine
- High compression of air creates the heat needed for fuel ignition
- Minimum air temperature in the cylinder is approx. 750 degF (4000 degC) to ignite the fuel and start the combustion process
Diesel Starting Aids

- Outside air temperature affects the internal cylinder temperature
- Colder temperatures may require some type of starting aid
 - Glow Plugs
 - Intake pre-heater
 - Ether injection
 - Engine coolant or lube oil heaters
 - Auxiliary Power Units (APU)
Fuel Injection

- High fuel injection pressures are needed:
 - Injection pressure may exceed 25,000 psi in some applications
 - This is needed to overcome high internal cylinder pressures
 - Use only OEM methods when identifying the source of high pressure fuel leaks
Horsepower and Torque

- The amount of fuel injected determines the amount of combustion pressure
 - Limited by the amount of available oxygen
 - Fuel continues to be injected after the combustion process begins in the cylinder
 - This greatly improves torque and horsepower at lower engine speeds
- Fuel injection is precisely controlled by the engine ECM governor
- The engine ECM instantly adjusts the fuel injection to the load placed on the engine
Diesel Combustion

- High pressure fuel injection is required
 - Precise fuel injection occurring at the correct time
 - Injection timing is critical to optimize engine power and fuel economy
 - Prevent engine damage
 - Control engine emissions
 - Prevent lube oil dilution from unburned fuel
 - There is a delay period after fuel is injected to when it begins to burn (lag)
 - This delay period determines the “Effective Timing”
Diesel fuel injection and combustion facts:

- Only the intake air charge is compressed in the cylinder
- Diesel fuel is injected into this compressed air charge
- Diesel fuel starts to combust rapidly upon mixing with the hot air
- Fuel continues to be injected mixing with hot combustion gases

- Diesel Combustion
- Diesel Combustion Process
The Four Stroke Cycle

- Intake
- Compression
- Power
- Exhaust
Four Stroke Cycle (cont.)

- An engine cycle describes one operation, from start to finish
- A stroke is one event in the 4-stroke cycle
- The specific stroke is determined by the camshaft
- All reciprocating piston engines have four events which must take place
 - Intake
 - Compression
 - Power
 - Exhaust
Four Stroke Cycle (cont.)

- Completion of all four needed events constitutes one cycle:
 - The events must occur in the proper sequence
 - One stroke is the movement of the piston from Top Dead Center (TDC) to Bottom Dead Center (BDC) or vice versa
 - One stroke requires 180° of crankshaft rotation
 - Intake and exhaust strokes can overlap to help expel exhaust gasses
Four Stroke Cycle (cont.)

- All modern diesel truck engines are 4-stroke designs:
 - The crankshaft must turn two revolutions (720°) in order to complete the 4-stroke cycle
 - All diesel truck engines will complete the 4-stroke cycle in 720°

- The once popular Detroit Diesel Corp 2-stroke engine is no longer used in modern truck applications
Four Stroke Cycle (cont.)

- Valves can only be open during two of the four strokes – intake and exhaust
 - The camshaft must turn half as fast as the crankshaft
 - This is typically accomplished by gear or chain
 - The camshaft will turn one revolution (360°) to complete the four-stroke cycle
 - The camshaft actuates the engine valvetrain
 - Valve Overlap will occur as the exhaust valve is closing and the intake valve is opening
 - Scavenging occurs during Valve Overlap
The camshaft will determine which of the two possible events occurs during a stroke:

- The intake and exhaust strokes overlap
- Intake always follows exhaust during the cycle
- The exhaust valve will be closing as the intake valve is opening
- This helps to purge exhaust gases from the cylinder (scavenging)
- Observing this valve overlap action will determine the correct direction of rotation
Diesel Intake Stroke

- Only the intake air enters the cylinder:
 - **NOT** the air/fuel charge
 - The downward movement of the piston draws fresh air into the cylinder
 - The turbocharger can force in more air
 - The exhaust valve remains open at the beginning of the intake stroke
 - The intake valve closes as the piston reaches BDC
Diesel Compression Stroke

- Only the cylinder fresh intake air charge is compressed:
 - **NOT** the air/fuel charge
 - The upward movement of the piston squeezes the air charge creating heat
 - The combustion chamber is shaped to produce maximum air turbulence
 - Fuel is injected after the air charge is compressed
 - Thorough mixing of fuel and air is critical to proper combustion
Diesel Compression Stroke (cont.)

- Diesel truck engines typically produce compression pressures about 600 PSI
 - The low volatility and ignition qualities of Diesel fuel helps prevent pre-ignition
 - Proper injection timing also helps prevent pre-ignition
 - The higher compression pressure contributes to more heat developed in the cylinder
 - The high compression ratio also causes greater expansion of the burning gases
 - Resulting in higher cylinder combustion pressure deriving most of the available energy from the fuel
Diesel Power Stroke

- High pressure fuel is injected into the engine cylinder near TDC:
 - Near the end of the compression stroke
 - Fuel mixes with the compressed air charge
 - Heat of compression ignites the fuel
 - The quantity of fuel injected is determined by engine speed and load
 - The engine ECM governs the amount of fuel injected based on various inputs
Diesel Power Stroke (cont.)

- High cylinder pressure is maintained longer than in a gasoline engine:
 - This is called the diesel constant pressure power stroke (expansion stroke)
 - Takes advantage of existing cylinder pressure on a greater crank throw angle
 - Fuel continues to be injected causing the gas pressure to peak 5° - 20° ATDC
 - This provides more torque at lower RPM’s
Diesel Exhaust Stroke

- The hot gases are expelled from the engine cylinder:
 - The exhaust valve opens when the piston is near BDC
 - Upward movement of the piston pushes the hot gases into the exhaust manifold
 - The intake valve opens near TDC drawing fresh, cool air into the cylinder
 - This provides additional cylinder cooling
 - Scavenging occurs when the intake air charge helps push the remaining exhaust out
Diesel Exhaust Stroke (cont.)

- The hot exhaust gas is used to drive the turbocharger:
 - Exhaust energy is captured by the turbine wheel of the turbocharger
 - The turbine wheel drives an impeller wheel compressing the intake air charge
 - Turbochargers capture exhaust energy
 - This action contributes to the volumetric and thermal efficiency of the diesel engine
Cylinder Compression Problems
Low Compression Pressure

- Low Compression could cause:
 - Hard starting
 - Rough idle
 - Low engine power
 - Poor engine performance
 - Poor engine fuel economy
 - Reduced engine power
 - Increased emissions/smoke
 - Cylinder misfire
 - Excessive crankcase pressure
Low Compression (cont.)

- Poor compression could be caused by:
 - Blown head gasket
 - Burnt valves/seats
 - Cracked cylinder head
 - Damaged compression seals
 - Cracked or worn piston rings
 - Burnt or damaged piston
 - Improper valve timing
 - Bent piston rod

- Internal combustion gas leaks usually occur with low compression problems

- Cylinder compression or leak-down tests can identify poor compression
Low Compression (cont.)

- Root causes of low compression:
 - Overall poor engine maintenance
 - Engine overheating issues
 - Poor quality lube oil
 - Lube system problems
 - Dirt entering air system
 - Cylinder misfire or detonation*
 - Fuel diluted engine oil
 - Improper use of starting fluids

*Violent, uncontrolled combustion that can cause internal engine damage
Companion Cylinders and Engine Rotation
Companion Cylinders

- Engines usually have two pistons which move together on the same plane:
 - These are called “Companion Cylinders”
 - Piston travel from TDC to BDC can be either intake or power stroke
 - Piston travel from BDC to TDC can be either Compression or exhaust stroke
- **Exception**: Engines with odd numbered cylinders do not have companion cylinders
Companion Cylinders (cont.)

- The typical inline 6-cylinder diesel engine firing order is 1-5-3-6-2-4
- The inline 6-cylinder companion cylinders are 1-6, 2-5, 3-4
- Example: If cylinder #6 is on the exhaust stroke, cylinder #1 is at TDC Compression stroke
- Observing valve overlap can determine the position of two pistons at TDC
Engine Rotation

- Engine rotation is usually determined by observing the crankshaft from the front.
- Right-hand (clockwise) rotation is standard on truck engines.
 - Some OEM’s list engine rotation by flywheel view (CAT).
 - Left-hand (counterclockwise) rotation for special applications.

Service Tip: Observing valve overlap can be used to determine correct engine rotation.
Engine Construction
Diesel Engine Construction

- Diesel engines have stronger parts and more robust designs:
 - Necessary because of higher pressures and loads
 - May be designed for in-chassis overhauls and major component replacement
 - Allows longer intervals between repair and maintenance
 - Designed for optimum engine life
Diesel Engine Design

- Intake and exhaust efficiency are primary design factors:
 - 4-valve heads are used for higher volumetric efficiency
 - The cross flow design of air intake and exhaust ports in the cylinder head is common
 - Turbochargers are standard on all truck engines
 - Charge-Air-Cooling (CAC) is common in truck applications (may be called Air-To-Air Coolers)
 - The CAC lowers the temperature of the intake air charge improving overall engine efficiency
Cross-Flow Cylinder Head

Valve Configuration

Cross Flow

Parallel Port

Exhaust tract

Exhaust valves

Cylinder

Intake tract

Injector

Intake valves
Diesel Combustion Chambers
Diesel Combustion Chambers

- Combustion Chambers
 - The combustion chamber is designed to develop maximum cylinder turbulence
 - This improves the mixing of the fuel with the intake air charge
 - Open Chambers – All of the cylinder volume is contained in a single space above or in the piston
 - Pre-combustion Chambers have an auxiliary chamber connected to the main chamber
Diesel Combustion Chambers

- Open Chambers
 - Improved thermal & volumetric efficiency
 - Do not need glow plugs to start
 - Uses Direct Injection (DI)
Diesel Combustion Chambers

- Pre-combustion Chambers
 - Needs glow plugs to start
 - Uses Indirect Injection (IDI)
 - Not typically used in modern Diesel Truck Engine applications
Glow Plugs

- Necessary to start engines equipped with pre-combustion chambers
- Electrical heating element that is inserted into the pre-combustion chamber
- Will shut-off shortly after the engine starts
- May cycle on/off during engine warm-up to improve performance & reduce smoke
- May be used in open chamber engines
 - Example: International/Ford Powerstroke
- Engine ECM controlled in most applications
Intake Pre-heaters

- Pre-heaters may be required to start engines in colder temperatures
- Heats the intake air
- An electrical grid placed in the intake manifold
- May be cycled on/off to improve engine performance & reduce smoke
- Controlled by engine electronics
Ether Injection

- A diesel engine may be equipped with an ether injection system
- Used to assist the starting of a diesel engine in cold weather
- Current ether injection systems are usually controlled by an ECM

Warning!! *Do not use ether starting fluids on Diesel engines equipped with glow plugs, intake air pre-heaters or Flamestart (CAT) starting aids*
Diesel Engine Starting Aids

- Glow Plugs
- Ether Injection
- Intake Pre-heater
Diesel Advantages and Disadvantages

- The Diesel Advantage

- In truck applications diesel engines have several advantages:
 - Superior fuel economy
 - Greater engine output @ lower RPM’s
 - Designed for serviceability
 - Major in-chassis repairs possible
 - Less routine maintenance
 - Less CO emissions
 - Diesel fuel is inherently safer to handle
 - Longer engine life
Diesel Advantages and Disadvantages (cont.)

- The Diesel Disadvantage:
 - Higher initial cost
 - Higher component replacement cost
 - Noise
 - Weight
 - Hard starting in cold weather
 - Two diesel emissions are difficult to control
 - Nitrogen Oxides – NOx
 - Particulate Matter – PM (soot)
Diesel Engine Usage

Usage of diesel engines is widespread:

- Trucks & Automobiles
- Marine & Ocean Vessels
- Mining
- Logging
- Oil Drilling
- Utility companies
- Military vehicles
- Farming
Diesel Engine Usage (cont.)

- Electrical power generation
 - Hospitals
 - Shopping centers
 - Highway department
 - Large buildings
 - Railroad
Diesel & Gas Engine Comparison

- Popular Light Truck Gas Engines
 - Ford Triton V-10 6.8L
 - 310 HP @ 4250 RPM
 - 425 lb-ft of torque @ 3250 RPM
 - GM Vortec 8100 V8 8.1L
 - 330 HP @ 4200 RPM
 - 450 lb-ft of torque @ 3200 RPM
 - Dodge Magnum 5.7L Hemi
 - 345 HP @ 5400 RPM
 - 375 lb-ft of torque @ 4200 RPM
Diesel & Gas Engine Comparison (cont.)

- Popular Light Duty Diesel Engines
 - Cummins ISB Series (inline 6)
 - 325 HP @ 2900 RPM
 - 600 lb-ft of torque @ 1600 RPM
 - Ford (Int’l) Power Stroke 6.0L (V8)
 - 325 HP @ 3300 RPM
 - 560 lb-ft of torque @ 2000 RPM
 - Ford (International) 4.5L (V6)
 - 200 HP @ 3000 RPM
 - 440 lb-ft of torque @ 1850 RPM