CHEM 1412. Chapter 17. Acid-Base Equilibria (Homework) Ky

1. In which one of the following solutions will acetic acid have the greatest percent ionization?

- A. 0.1 M CH₃COOH
- B. 0.1 M CH₃COOH dissolved in 1.0 M HCl
- C. 0.1 M CH₃COOH plus 0.1 M CH₃COONa
- D. 0.1 M CH₃COOH plus 0.2 M CH₃COONa
- 2. Which of the following is the most acidic solution?
- A. 0.10 M CH₃COOH and 0.10 M CH₃COONa
- B. 0.10 M CH₃COOH
- C. 0.10 M HNO₂
- D. 0.10 M HNO_2 and 0.10 M NaNO_2
- E. 0.10 M CH₃COONa

3. Which of the following yields a buffer solution when equal volumes of the two solutions are mixed?

- A. 0.10M H_2CO_3 and 0.050M HCl
- B. 0.10M H_2CO_3 and 0.10M KOH
- C. 0.10M H_2CO_3 and 0.10M HCl
- D. 0.10M H_2CO_3 and 0.050M KOH
- E. 0.10M K_2CO_3 and 0.050M KOH

4. Calculate the pH of a buffer solution that contains 0.25 M benzoic acid (C₆H₅CO₂H) and 0.15M sodium benzoate (C₆H₅COONa). [K_a = 6.5×10^{-5} for benzoic acid] A. 3.97 B. 4.83 C. 4.19 D. 3.40 E. 4.41 5. A solution is prepared by mixing 500. mL of 0.10 M NaOCI and 500. mL of 0.20 M HOCI. What is the pH of this solution? [K_a(HOCI) = 3.2×10^{-8}] A. 4.10

B. 7.00

C. 7.19

D. 7.49

E. 7.80

6. You are asked to go into the lab and prepare an acetic acid - sodium acetate buffer solution with a pH of 4.00 \pm 0.02. What molar ratio of CH₃COOH to CH₃COONa should be used?

A. 0.18

B. 0.84

C. 1.19

D. 5.50

E. 0.10

7. Consider a buffer solution prepared from HOCI and NaOCI. Which is the net ionic equation for the reaction that occurs when NaOH is added to this buffer?

Α.

 $OH^- + HOCI \rightarrow H_2O + OCI^-$

Β.

 $OH^- + OCI^- \rightarrow HOCI + O^{2^-}$

C.

 $\rm Na^{+} + \rm HOCI \rightarrow \rm NaCI + \rm OH^{-}$

D.

 $\mathsf{H}^{\scriptscriptstyle +} + \mathsf{HOCI} \to \mathsf{H}_2 + \mathsf{OCI}^{\scriptscriptstyle -}$

Ε.

 $\text{NaOH} + \text{HOCI} \rightarrow \text{H}_2\text{O} + \text{NaCI}$

8. Assuming equal concentrations of conjugate base and acid, which one of the following mixtures is suitable for making a buffer solution with an optimum pH of 9.2–9.3?

- A. CH₃COONa / CH₃COOH (K_a = 1.8×10^{-5})
- B. NH₃ / NH₄Cl (K_a = 5.6×10^{-10})
- C. NaOCI / HOCI (Ka = 3.2×10^{-8})
- D. NaNO₂ / HNO₂ (K_a = 4.5×10^{-4})
- E. NaCl / HCl

9. Assuming equal concentrations of conjugate base and acid, which one of the following mixtures is suitable for making a buffer solution with an optimum pH of 4.6–4.8?

A. CH₃COO₂Na / CH₃COOH (K_a = 1.8×10^{-5})

- B. NH₃ / NH₄Cl (K_a = 5.6×10^{-10})
- C. NaOCI / HOCI (Ka = 3.2×10^{-8})
- D. NaNO₂ / HNO₂ (K_a = 4.5×10^{-4})
- E. NaCl / HCl

10. Starting with 0.750L of a buffer solution containing 0.30 M benzoic acid (C₆H₅COOH) and 0.35 M sodium benzoate (C₆H₅COONa), what will the pH of the solution be after the addition of 340.0 mL of 0.350M HCI? (K_a (C₆H₅COOH) = 6.5×10^{-5})

A. 4.19

B. 4.25

C. 3.81

D. 0.45

E. 6.54

11. Calculate the percent ionization of cyanic acid, $K_a = 2.0 \times 10^{-4}$, in a buffer solution that is 0.50 M HCNO and 0.10 M NaCNO.

A. 0.02%

- B. 0.10%
- C. 0.20%

D. 2.0%

E. 20%

12. 25.0 mL of a 0.100 M solution of NH_3 is titrated with 0.150M HCl. After 10.0 mL of the HCl has been added, the resultant solution is:

- A. Basic and before the equivalence point
- B. Basic and after the equivalence point
- C. Acidic and before the equivalence point
- D. Acidic and after the equivalence point
- E. Neutral and at the equivalence point

13. 25.0 mL of a 0.100 M solution of NH_3 is titrated with 0.250M HCl. After 10.0 mL of the HCl has been added, the resultant solution is:

- A. Basic and before the equivalence point
- B. Basic and after the equivalence point
- C. Acidic and before the equivalence point
- D. Basic and at the equivalence point
- E. Acidic and at the equivalence point

14. 25.0 mL of a 0.100 M solution of NH_3 is titrated with 0.250M HCl. After 25.0 mL of the HCl has been added, the resultant solution is:

- A. Basic and before the equivalence point
- B. Basic and after the equivalence point
- C. Acidic and before the equivalence point
- D. Acidic and after the equivalence point
- E. Neutral and at the equivalence point

15. 40.0 mL of a 0.65 M solution of HF is titrated with 0.100 M NaOH. After 0.400 L of the NaOH solution has been added, the resultant solution is:

- A. Basic and before the equivalence point
- B. Basic and after the equivalence point
- C. Acidic and before the equivalence point
- D. Acidic and after the equivalence point
- E. Neutral and at the equivalence point

16. 35.00 mL of a 0.30 M HCl solution is titrated with 0.35 M NaOH. What is the pH of the solution after 40.00 mL of the NaOH has been added?

- A. 2.46
- B. 11.54
- C. 7.00
- D. 12.72
- E. 12.67

17. 50.00 mL of 0.10 M HNO₂ (nitrous acid, $K_a = 4.5 \times 10^{-4}$) is titrated with a 0.10 M KOH solution. After 25.00 mL of the KOH solution is added, the pH in the titration flask will be

- A. 2.17.
- B. 3.35.
- C. 2.41.
- D. 1.48.
- E. 7.00.

18. What is the pH at the equivalence point in the titration of 100 mL of 0.10 M HCl with 0.10 M NaOH?

A. 1.0

B. 6.0

- C. 7.0
- D. 8.0
- E. 13.0

19. What is the pH at the equivalence point in the titration of 100 mL of 0.10 M HCN (K_a = 4.9×10^{-10}) with 0.10 M NaOH?

A. 3.0

B. 6.0

C. 7.0

D. 11.0

E. 12.0

20. Calculate the pH of the solution resulting from the addition of 10.0 mL of 0.10 M NaOH to 50.0 mL of 0.10 M HCN (K_a = 4.9×10^{-10}) solution.

A. 5.15

B. 8.71

C. 5.85

D. 9.91

E. 13.0

21. Calculate the pH of the solution resulting from the addition of 25.0 mL of 0.20 M HCl to 50.0 mL of 0.10 M aniline (C₆H₅NH₂). K_b (C₆H₅NH₂) = 3.8×10^{-10} A. 9.42 B. 9.12 C. 7.00 D. 2.30 E. 2.88 22. Calculate the pH of the solution resulting from the addition of 85.0 mL of 0.35 M HCl to 30.0 mL of 0.40 M aniline (C₆H₅NH₂). K_b (C₆H₅NH₂) = 3.8×10^{-10} A. 1.75 B. 0.81 C. 4.64 D. 4.19

E. 9.09

23. For PbCl₂ (K_{sp} = 2.4×10^{-4}), will a precipitate of PbCl₂ form when 0.10 L of 3.0×10^{-2} M Pb(NO₃)₂ is added to 400 mL of 9.0×10^{-2} M NaCl?

Α.

Yes, because Q > $K_{sp.}$

B. No, because Q < K_{sp.}

- C. No, because Q = K_{sp}
- D. Yes, because Q < $K_{sp.}$

24. The molar solubility of magnesium carbonate is 1.8×10^{-4} mol/L. What is K_{sp} for this compound? A. 1.8×10^{-4} B. 3.6×10^{-4} C. 1.3×10^{-7} D. 3.2×10^{-8} E. 2.8×10^{-14} 25. The molar solubility of lead(II) iodate in water is 4.0×10^{-5} mol/L. Calculate K_{sp} for lead(II) iodate. A. 1.6×10^{-9} B. 6.4×10^{-14} C. 2.6×10^{-13} D. 4.0×10^{-5} E. 4.0×10^{-15}

26. The solubility product for chromium(III) fluoride is $K_{sp} = 6.6 \times 10^{-11}$. What is the molar solubility of chromium(III) fluoride?

- A. $1.6\times10^{-3}~M$
- B. $1.2\times10^{-3}~M$
- $C.~6.6\times10^{-11}~M$
- $D.~2.2\times10^{-3}~M$
- E. $1.6\times10^{-6}~M$

pg. 9 CHEM 1412. Chapter 17. Acid-Base Equilibria (Homework) Ky

27. Calculate the concentration of chloride ions in a saturated lead(II) chloride ($K_{sp} = 2.4 \times 10^{-4}$) solution.

A. $2.4\times10^{-4}~M$

B. 4.8×10^{-4} M

 $C. 3.9 \times 10^{-2} M$

- D. 1.2×10^{-1} M
- E. $7.8\times10^{-2}~M$

28. Will a precipitate of magnesium fluoride form when 300. mL of 1.1×10^{-3} M MgCl₂ are added to 500. mL of 1.2×10^{-3} M NaF? [K_{sp} (MgF₂) = 6.9×10^{-9}] A. Yes, Q > K_{sp}

- B. No, Q < K_{sp}
- C. No, Q = K_{sp}
- D. Yes, $Q < K_{sp}$
- E. Yes, Q = K_{sp}

29. Will a precipitate (ppt) form when 300. mL of 2.0×10^{-5} M AgNO₃ are added to 200. mL of 2.5×10^{-9} M Nal? Answer yes or no, and identify the precipitate if there is one.

- A. Yes, the ppt is $AgNO_3(s)$
- B. Yes, the ppt is NaNO₃(s)
- C. Yes, the ppt is Nal(s)
- D. Yes, the ppt is Agl(s)
- E. No, a precipitate will not form

30. Which response has both answers correct? Will a precipitate form when 250 mL of 0.33 M Na₂CrO₄ are added to 250 mL of 0.12 M AgNO₃? [K_{sp}(Ag₂CrO₄) = 1.1×10^{-12}] What is the concentration of the silver ion remaining in solution?

A. Yes, [Ag⁺] = 2.9×10^{-6} M

- B. Yes, [Ag⁺] = 0.060 M
- C. Yes, $[Ag^+] = 1.3 \times 10^{-4} \text{ M}$
- D. No, [Ag⁺] = 0.060 M
- E. No, [Ag⁺] = 0.105 M

31. To 1.00 L of a 0.100 M aqueous solution of benzoic acid (C₆H₅COOH) is added 1.00 mL of 12.0 M HCI. What is the percentage ionization of the benzoic acid in the resulting solution? [K_a(C₆H₅COOH) = 6.5×10^{-5}]

A. 3.3%

B. 12%

- C. 1.3%
- D. 0.52%
- E. 0.065%

32. Calculate the molar solubility of AgCl in a 0.15 M solution of $NH_3(aq)$.

 $(K_{sp} (AgCI) = 1.6 \times 10^{-10}; K_f (Ag(NH_3)_2^+) = 1.5 \times 10^7)$

- A. 6.7 x 10⁻³ M
- B. 1.3 x 10⁻⁵ M
- C. 3.9 x 10³ M
- D. 7.5 x 10⁻² M
- E. 3.3 x 10⁻⁵ M

33. Calculate the molar solubility of AgBr in a 0.25M solution of NH₃(aq) (K_{sp} (AgBr) = 7.7 x 10⁻¹³; K_f (Ag(NH₃)₂⁺) = 1.5 x 10⁷. A. 8.8 x 10⁻⁷ M B. 3.4 x 10⁻³ M C. 8.4 x 10⁻⁴ M D. 2.5 x 10⁻¹ M E. 9.7 x 10² M 34. Find the concentration of Pb²⁺ ions in a solution made by adding 5.00 g of lead(II) iodide to 500. mL of 0.150 M KI. [For Pbl₂, K_{sp} = 1.39×10^{-8} .] A. 3.04 × 10⁻⁴ M B. 1.54 × 10⁻⁷ M C. 6.18 × 10⁻⁷ M C. 6.18 × 10⁻⁷ M E. 9.27 × 10⁻⁸ M

35. What volume of 0.0500 M sodium hydroxide should be added to 250. mL of 0.100 M HCOOH to obtain a solution with a pH of 4.50? [K_a(HCOOH) = 1.7×10^{-4}]

- A. 540 mL
- B. 420 mL
- C. 80. mL
- D. 340 mL
- E. 500. mL

36. 500. mL of a solution containing 1.5 M $NH_3(aq)$ is mixed with 500. mL of a solution containing 0.50M of HCl(aq). What is the pH of the final solution?

 $(K_b(NH_3) = 1.8 \times 10^{-5})$

- A. 9.16
- B. 9.36
- C. 9.56
- D. 9.76
- E. None of the Above

37. Calculate the percent ionization of formic acid in a 0.010 M HCOOH solution.

 $(K_a = 1.7 \times 10^{-4})$

- A. 11%
- B. 13%
- C. 15%
- D. 17%
- E. None of the Above

38. Calculate the percent ionization of formic acid in a solution that is 0.010 M HCOOH and 0.005 M HCOONa. (K_a = 1.7×10^{-4})

A. 1.4%

- B. 2.4%
- C. 3.4%
- D. 4.4%
- E. None of the Above

39. Calculate the percent ionization of formic acid in a solution that is 0.010 M HCOOH and 0.050 M HCOONa. (K_a = 1.7×10^{-4})

A. 0.34%

- B. 0.44%
- C. 0.54%
- D. 0.64%
- E. None of the Above

40. Calculate the pH at the equivalence point for the titration of 0.22 M HCN with 0.22 M NaOH. (K_a = 4.9×10^{-10} for HCN)

A. 10.58

B. 10.78

C. 10.98

D. 11.18

E. None of the above

41.

340. mL of a 0.150M solution of NH₃(aq) is titrated with 0.100 M HCl. Calculate the pH of the solution after 750. mL of the HCl has been added. ($K_a(NH_4^+) = 5.6 \times 10^{-10}$)

- A. 1.46
- B. 1.66
- C. 1.86
- D. 2.06
- E. None of the above

42. Calculate the molar solubility of silver carbonate. (K_{sp} (Ag₂CO₃ = 8.1 x 10⁻¹²))

A. 1.1 x 10⁻⁴ M

- B. 1.3 x 10⁻⁴ M
- C. 1.5 x 10⁻⁴ M
- D. 1.7 x 10⁻⁴ M
- E. None of the above

43. The K_{sp} of CaF_2 is 4×10^{-11} . What is the maximum concentration of Ca^{2+} possible in a 0.10 M NaF solution?

- A. 4×10^{-7} M
- $B.~4\times10^{-8}~M$
- $C.\;4\times10^{-9}\;M$
- $D.\;4\times10^{-10}\;M$
- E. None of the above

44. 5.0 mL of 12 M NH₃ is added to 500. mL of 0.050 M AgNO₃. What concentration of silver ion will exist after equilibrium is established? [K_f for Ag(NH₃)₂⁺ is 1.5×10^7 .]

- A. $8.2\times10^{-6}~M$
- B. 8.4×10^{-6} M
- C. 8.6×10^{-6} M
- $D.\;8.8\times10^{-6}\;M$
- E. None of the above

45. Calculate the equilibrium constant K_c for the following overall reaction: AgCl(s) + 2CN⁻(aq) \rightleftharpoons Ag(CN)₂⁻(aq) + Cl⁻(aq) For AgCl, K_{sp} = 1.6 × 10⁻¹⁰; for Ag(CN)₂⁻, K_f = 1.0 × 10²¹. A. 1.2 × 10¹¹ B. 1.4 × 10¹¹ C. 1.6 × 10¹¹ D. 1.8 × 10¹¹

E. None of the above

46. The solubility of Ba(NO₃)₂ is 130.5 g/L at 0°C. How many moles of dissolved salt are present in 4.0 L of a saturated solution of Ba(NO₃)₂ at 0°C?

- A. 1.0 moles
- B. 2.0 moles
- C. 3.0 moles
- D. 4.0 moles
- E. None of the above

47. NaCl is added slowly to a solution that is 0.010 M each in Cu⁺, Ag⁺, and Au⁺. The K_{sp}'s for CuCl, AgCl, and AuCl are 1.9×10^{-7} , 1.8×10^{-10} , and 2.0×10^{-13} , respectively. Which compound will precipitate first?

- A. CuCl
- B. AgCl
- C. AuCl
- D. Au and Ag will precipitate at the same time
- E. None will precipitate

48. How many moles of NaF must be dissolved in 1.00 liter of a saturated solution of PbF₂ at 25°C to reduce the [Pb²⁺] to 1.0×10^{-6} M? The K_{sp} for PbF₂ at 25 °C is 4.0×10^{-8} .

A. 0.20 mol

- B. 0.30 mol
- C. 0.40 mol
- D. 0.50 mol
- E. None of the above

49. At 25 °C, the base ionization constant for NH₃ is 1.8×10^{-5} . Determine the hydroxide ion concentration in a 0.150 M solution of ammonia at 25 °C.

- A. $1.6\times10^{\text{--}2}$ M
- B. $3.2\times10^{\text{-}2}$ M
- C. $1.6\times10^{\text{-3}}$ M
- $D.~3.2\times10^{\text{-3}}M$
- E. None of the above

50. At 25 °C, the base ionization constant for NH₃ is 1.8×10^{-5} . Determine the pH of a solution prepared by adding 0.0500 mol of solid ammonium chloride to 100. mL of 0.150 M ammonia.

- A. 3.47
- B. 8.73
- C. 10.4
- D. 12.3
- E. None of the above

CHEM 1412. Chapter 17. Acid-Base Equilibria (Homework) Ky

Key

1. A			
2. C			
3. D			
4. A			
5. C			
6. D			
7. A			
8. B			
9. A			
10. C			
11. C			
12. A			
13. E			
14. D			
15. B			
16. E			
17. B			
18. C			

19 D		
20 R		
21.5		
21. E		
22. B		
23. B		
24. D		
25. C		
26. B		
27. E		
28. B		
29. D		
30. A		
31. D		
32. A		
33. C		
34. C		
35. B		
36. C		
37. B		
38. C		
39. A		
40. D		
41. B		
42. B		
43. C		
pg. 2 CHEM 1412. Chapter 17. Acid-Bas	se Equilibria (Homework) Ky	

44. B			
45. C			
46. B			
47. C			
48. A			
49. C			
50. B			

pg. 3 CHEM 1412. Chapter 17. Acid-Base Equilibria (Homework) Ky