Calculus 1 Test 4 Review

1. Analyze and sketch a graph of the function \(f(x) = \frac{x^2 - 2x + 9}{x} \).

2. Use differentials to approximate the value of \(\sqrt[3]{7.5} \). Round your answer to four decimal places.

3. Determine the slant asymptote of the graph of \(f(x) = \frac{x^2 + 8x + 14}{x + 6} \).

4. Find the differential \(dy \) of the function \(y = 2x^{3/7} \).

5. The measurement of the radius of the end of a log is found to be 28 inches, with a possible error of \(\frac{1}{4} \) inch. Use differentials to approximate the possible propagated error in computing the area of the end of the log.

6. Find the differential \(dy \) of the function \(y = -x^2 - 3x - 2 \).

7. The radius of a spherical balloon is measured to be 8 inches, with a possible error of 0.03 inch. Use differentials to approximate the maximum possible error in calculating the volume of the sphere. Round your answer to two decimal places.

8. Use Newton’s Method to approximate the \(x \)-value of the indicated point of intersection of the two graphs accurate to three decimal places. Continue the process until two successive approximations differ by less than 0.001. [Hint: Let \(h(x) = f(x) - g(x) \).]

\[
\begin{align*}
 f(x) &= 3x + 1 \\
 g(x) &= \sqrt{x + 5}
\end{align*}
\]

9. Find the equation of the tangent line \(T \) to the graph of \(f(x) = \frac{19}{x^2} \) at the given point \(\left(2, \frac{19}{4} \right) \).
10. Find the point on the graph of \(f(x) = 25 - x^2 \) that is closest to the point \((1,0)\). Round all numerical values of the solution to three decimal places.

11. Complete two iterations of Newton's Method for the function \(f(x) = \cos x \) using the initial guess \(x_1 = 1.3 \). Round all numerical values in your answer to four decimal places.

12. Find two positive numbers whose product is 181 and whose sum is a minimum.

13. Determine the slant asymptote of the graph of \(f(x) = \frac{5x^2 - 9x + 5}{x - 1} \).

14. Analyze and sketch a graph of the function \(y = x\sqrt{9-x} \).

15. Approximate the positive zero(s) of the function \(f(x) = x^3 - \cos x \) to three decimal places. Use Newton's Method and continue the process until two successive approximations differ by less than 0.001.

16. Find the point on the graph of the function \(f(x) = (x + 1)^2 \) that is closest to the point \((-5,1)\). Round all numerical values in your answer to four decimal places.

17. Find the point on the graph of the function \(f(x) = \sqrt{x} \) that is closest to the point \((18,0)\).

18. Use Newton's Method to approximate the zero(s) of the function \(f(x) = x^3 + x + 1 \) accurate to three decimal places.

19. Use Newton's Method to approximate the zero(s) of the function \(f(x) = x - 2\sqrt{x+2} \) accurate to three decimal places.

20. The concentration \(C \) of a chemical in the bloodstream \(t \) hours after injection into muscle tissue is given by \(C = \frac{5t^2 + t}{50 + t^3} \). When is the concentration greatest? Round your answer to three decimal places.

21. A sector with central angle \(\Theta \) is cut from a circle of radius 10 inches, and the edges of the sector are brought together to form a cone. Find the magnitude of \(\Theta \) such that the volume of the cone is a maximum.

22. On a given day, the flow rate \(F \) (cars per hour) on a congested roadway is given by \(F = \frac{v}{17 + 0.04v^2} \), where \(v \) is the speed of the traffic in miles per hour. What speed will maximize the flow rate on the road? Round your answer to the nearest mile per hour.
Calculus 1 Test 4 Review
Answer Section

SHORT ANSWER

1. ANS:
 none of the above

 PTS: 1 DIF: Medium REF: 3.6.15
 OBJ: Graph a function using extrema, intercepts, symmetry, and asymptotes
 MSC: Skill NOT: Section 3.6

2. ANS:
 1.9583

 PTS: 1 DIF: Medium REF: 3.9.44
 OBJ: Estimate the value of a radical using differentials
 MSC: Skill NOT: Section 3.9

3. ANS:
 \(y = x + 2 \)

 PTS: 1 DIF: Medium REF: 3.6.15
 OBJ: Identify the slant asymptote of the graph of a function
 MSC: Skill NOT: Section 3.6

4. ANS:
 \(\frac{6}{7} x^{-4/7} \, dx \)

 PTS: 1 DIF: Medium REF: 3.9.12
 OBJ: Calculate the differential of \(y \) for a given function
 MSC: Skill NOT: Section 3.9

5. ANS:
 \(\pm 14\pi \) square inches

 PTS: 1 DIF: Easy REF: 3.9.29
 OBJ: Estimate the propagated error using differentials
 MSC: Application NOT: Section 3.9

6. ANS:
 \((-2x - 3) \, dx \)

 PTS: 1 DIF: Medium REF: 3.9.11
 OBJ: Calculate the differential of \(y \) for a given function
 MSC: Skill NOT: Section 3.9
7. **ANS:**
 ±24.13 cubic inches

 PTS: 1 **DIF:** Medium **REF:** 3.9.33a
 OBJ: Estimate the propagated error using differentials **MSC:** Application
 NOT: Section 3.9

8. **ANS:**
 0.444

 PTS: 1 **DIF:** Medium **REF:** 3.8.15
 OBJ: Estimate the intersection point of two graphs using Newton's Method
 MSC: Skill **NOT:** Section 3.8

9. **ANS:**
 \[y = -\frac{19x}{4} + \frac{57}{4} \]

 PTS: 1 **DIF:** Easy **REF:** 3.9.2
 OBJ: Write an equation of a line tangent to the graph of a function at a specified point
 MSC: Skill **NOT:** Section 3.9

10. **ANS:**
 \((4.960,0.398) \)

 PTS: 1 **DIF:** Medium **REF:** 3.8.35
 OBJ: Estimate an extremum involving distance between points using calculus
 MSC: Application **NOT:** Section 3.8

11. **ANS:**

 | \(n \) | \(x_n \) | \(f(x_n) \) | \(f'(x_n) \) | \(\frac{f(x_n)}{f'(x_n)} \) | \(x_n - \frac{f(x_n)}{f'(x_n)} \) |
 |---|---|---|---|---|
 | 1 | 1.3 | 0.2675 | -0.9636 | -0.2776 | 1.5776 |
 | 2 | 1.5776 | -0.0068 | -1.0000 | 0.0068 | 1.5708 |

 PTS: 1 **DIF:** Easy **REF:** 3.8.3
 OBJ: Estimate a zero of a function using two iterations of Newton's Method
 MSC: Skill **NOT:** Section 3.8

12. **ANS:**
 \(\sqrt{181}, \sqrt{181} \)

 PTS: 1 **DIF:** Easy **REF:** 3.7.4
 OBJ: Apply calculus techniques to solve a minimum/maximum problem involving the sum of two numbers
 MSC: Application **NOT:** Section 3.7
13. **ANS:**

 \[y = 5x - 4 \]

 PTS: 1 DIF: Medium REF: 3.6.16
 OBJ: Identify the slant asymptote of the graph of a function MSC: Skill
 NOT: Section 3.6

14. **ANS:**

 \[
 \begin{align*}
 f(x) & = \frac{1}{x} \\
 y & = f(x)
 \end{align*}
 \]

 PTS: 1 DIF: Medium REF: 3.6.18
 OBJ: Graph a function using extrema, intercepts, symmetry, and asymptotes MSC: Skill
 NOT: Section 3.6

15. **ANS:**

 0.865

 PTS: 1 DIF: Medium REF: 3.8.14
 OBJ: Estimate a zero of a function using Newton's Method MSC: Skill
 NOT: Section 3.8

16. **ANS:**

 \((-2.3918, 1.9370)\)

 PTS: 1 DIF: Difficult REF: 3.7.14
 OBJ: Apply calculus techniques to solve a minimum/maximum problem involving the distance between points MSC: Application NOT: Section 3.7

17. **ANS:**

 \[
 \left(\frac{35}{2}, \sqrt{\frac{35}{2}} \right)
 \]

 PTS: 1 DIF: Medium REF: 3.7.15
 OBJ: Apply calculus techniques to solve a minimum/maximum problem involving the distance between points MSC: Application NOT: Section 3.7
18. ANS:
-0.682

PTS: 1 DIF: Medium REF: 3.8.7
OBJ: Estimate a zero of a function using Newton's Method MSC: Skill
NOT: Section 3.8

19. ANS:
5.464

PTS: 1 DIF: Medium REF: 3.8.10
OBJ: Estimate a zero of a function using Newton's Method MSC: Skill
NOT: Section 3.8

20. ANS:
\[t \approx 4.546 \text{ hours} \]

PTS: 1 DIF: Medium REF: 3.8.38
OBJ: Estimate an extremum involving chemical concentration of the blood using calculus and Newton's Method
MSC: Application NOT: Section 3.8

21. ANS:
\[
2 \left(1 - \frac{\sqrt{2}}{\sqrt[3]{3}}\right) \pi \text{ radians}
\]

PTS: 1 DIF: Medium REF: 3.7.56
OBJ: Apply calculus techniques to solve a minimum/maximum problem involving the volume of a cone
MSC: Application NOT: Section 3.7

22. ANS:
21 miles per hour

PTS: 1 DIF: Medium REF: 3.7.20
OBJ: Apply calculus techniques to solve a minimum/maximum problem involving traffic flow
MSC: Application NOT: Section 3.7