CHEM 1411 – STUDY-GUIDE-for-TEST-3

(CHAPTERS 7, 8)

1. In the following diagram of a wave

B) (a) is frequency and (b) is amplitudeC) (a) is wavelength and (b) is frequencyAns: E

- (a) is amplitude and (b) is frequency
- (a) is wavelength and (b) is amplitude

2. What is the wavelength of radiation that has a frequency of $5.39 \times 10^{14} \text{ s}^{-1}$? (c = 2.9979 × 10⁸ m/s) A) $1.80 \times 10^{-3} \text{ nm}$ B) 556 nm C) 618 nm D) 6180 nm E) $1.61 \times 10^{23} \text{ nm}$

Ans: B

A)

3. In an electron microscope, electrons are accelerated to great velocities. Calculate the wavelength of an electron traveling with a velocity of 7.0×10^3 kilometers per second. The mass of an electron is 9.1×10^{-28} g.

```
A) 1.0 \times 10^{-13} m B) 1.0 \times 10^{-10} m C) 1.0 \times 10^{-7} m D) 1.0 m
```

|--|

- 4. When photons with a wavelength of 310. nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45×10^5 m/s. Calculate the binding energy of electrons to the magnesium surface.
 - A) 32.7 kJ/mol

- D) 386 kJ/mol
- B) 321 kJ/mol
- E) 419 kJ/mol

C) 353 kJ/mol

Ans: C

5. Which one of the following sets of quantum numbers is not possible?

	n	l	m_l	\mathbf{m}_{s}
	A. 4	3	-2	+1/2
	B. 3	2	-3	-1/2
	C. 3	0	0	+1/2
	D. 4	1	1	-1/2
	E. 2	0	0	+1/2
A) A	B) B	C) (D) D	E) E

Ans: B

- 6. List the following sets of quantum numbers in order of increasing energy:
 - $\begin{array}{ll} I. & n=4, \, l=1, \, m_l=1, \, m_s=+1/2 \\ II. & n=3, \, l=2, \, m_l=-1, \, m_s=+1/2 \\ III. & n=4, \, l=0, \, m_l=0, \, m_s=+1/2 \\ A) \ I < II < III & B) \ II < III < I & C) \ III < II < I & D) \ I < III < II & E) \ III < I < II \\ \end{array}$

```
Ans: C
```

7. What is the maximum number of electrons in an atom that can have the following quantum numbers? n = 3 l = 2

A) 18 B) 10 C) 5 D) 2 E) 1

Ans:	В
------	---

- 8. A possible set of quantum numbers to describe an electron in a 3d subshell is
 - A) $n = 3, l = 0, m_l = 0, m_s = +1/2$ D) $n = 3, l = 3, m_l = 1, m_s = -1/2$
 - B) $n = 3, l = 1, m_l = 0, m_s = -1/2$ E) $n = 2, l = 0, m_l = 0, m_s = +1/2$
 - C) $n = 3, l = 2, m_l = 1, m_s = +1/2$

```
Ans: C
```

9. The orbital diagram for a ground-state oxygen atom is

10. Which element has the following ground-state electron configuration? [Xe]6s²4f¹⁴5d¹⁰
A) Lu B) Cd C) Hg D) Lr E) Au

- 11. Which of the following is the electron configuration of an excited state of an oxygen atom?
 A) 1s²2s²2p⁴
 B) 1s²2s²2p⁵
 C) 1s²2s²2p³3s¹
 D) 1s²2s²2p⁶
 E) 1s²2s²2p³
 Ans: C
- 12. What is the ground-state electron configuration for chlorine?

Ans: $1s^22s^22p^63s^23p^5$ or [Ne] $3s^23p^5$

13. (TRUE/FALSE) The quantum numbers, n = 4, l = 3, $m_l = 2$, $m_s = +1/2$, represent an electron in a 4f subshell Ans: True

- 14. Which one of the following elements is a Lanthanide?
 - A) U B) Ce C) Os D) Bi E) Cs Ans: B
- 15. Which of the following is the general electron configuration for the outermost electrons of elements in the alkaline earth group?

A) ns^1 B) ns^2 C) ns^2np^4 D) ns^2np^5 E) $ns^2np^6(n-1)d^6$ Ans: B

- 16. The representative elements are those with unfilled energy levels in which the "last electron" was added to
 - A) an *s* orbital. an *s* or *p* orbital.
- D) a *p* or *d* orbital. an *f* orbital. E)

C) a *d* orbital.

B)

Ans: B

Ans: E

17. Concerning the electron configuration of fluorine, $1s^22s^22p^5$ which of the following represents the core electrons only? $1 + 1e^2 = B + 1e^2 2e^2 = C + 1e^2 2e^2 = D + 2e^5 = C + 2e^5 = D + 2e^5 = E +$

A)
$$1s^2$$
 B) $1s^22s^2$ C) $1s^22s^22p^3$ D) $2s^22p^3$ E)
Ans: A

18. Which one of the following pairs are *isoelectronic*?

A)	Mn^{2+} and Ar	D)	Cl ⁻ and S
B)	Zn^{2+} and Cu^{2+}	E)	\mathbf{K}^{+} and \mathbf{Cl}^{-}
C)	Na^+ and K^+		

19. Which of the following is the electron configuration of a sulfide ion?
A) [Ne]3s²3p⁴
B) [Ne]
C) [Ne]3s²3p¹
D) [Ar]
E) [Ne]3s²3p²
Ans: D

- 20. Which of the following ground-state ions has unpaired electrons?
 A) P³⁻ B) V⁵⁺ C) Mg²⁺ D) Sc²⁺ E) S²⁺
 Ans: D
- 21. For which of the following reactions is the enthalpy change equal to the third ionization energy of vanadium?
 - A) $V^{2+}(g) \rightarrow V^{3+}(g) + e^{-}$ B) $V^{3+}(g) + e^{-} \rightarrow V^{2+}(g)$ C) $V(g) \rightarrow V^{3+}(g) + 3e^{-}$ Ans: A
- 22. Which of the elements listed below has the following pattern for its first six ionization energies? (I_1 = first ionization energy, I_2 = second ionization energy, etc.)

- 23. The electron affinity of fluorine is essentially equal to
 - the negative of the ionization energy F. A)
 - the ionization energy F⁻. B)
 - the negative of the ionization energy F⁻. C)
 - the ionization energy Ne. D)
 - the negative of the ionization energy Ne. E) Ans: B
- 24. In a surprisingly large number of their properties, beryllium resembles aluminum and boron resembles silicon. Such a relationship is called
 - amphoterism. A)

Ans: C

Ans: E

C)

- an allotropic relationship. B) a diagonal relationship.
- D) the periodic law.
- an isoelectronic series. E)
- 25. Which of the following is a *basic* oxide? A) CO₂ B) CaO C) SO₂ D) H₂O E) NO₂ Ans: B
- 26. Which of the following elements behaves chemically similarly to potassium? A) magnesium B) sodium C) beryllium D) chlorine E) iron Ans: B
- 27. Consider the following reaction: $3Li + Z \rightarrow Li_3Z$. What is the formula for the compound if we substitute magnesium for lithium? A) MgZ B) Mg₂Z C) MgZ₂ D) Mg₃Z E) Mg₃Z₂

28. Which species has the greater radius, an I^- ion or an I atom? Briefly explain your choice of answer.

Ans: Γ; I and Γ have the same number of protons, but Γ has a greater number of electrons. The additional electron–electron repulsion in Γ causes the radius of the ion to be larger than that of the neutral atom.

29. Write the products of the following reaction: $H_2(g) + Cl_2(g) \rightarrow$

Ans: 2HCl(g)

30. (TRUE/FALSE): *Electron affinity* is always a positive quantity.

Ans: False

______Chapter-9.

31. Which one of the following is most likely to be an ionic compound?A) NCl₃ B) BaCl₂ C) CO D) SO₂ E) SF₄

Ans: B

32. The Lewis dot symbol for the calcium ion is

A) :Ca:²⁺ B) —Ca— C) : $\overset{\bullet}{Ca}$:²⁺ D) Ca²⁺ E) Ca Ans: D 33. Calculate the energy change for the reaction

 $K(g) + Br(g) \rightarrow K^+(g) + Br^-(g)$ given the following ionization energy (IE) and electron affinity (EA) values IE EA K: 419 kJ/mol 48 kJ/mol Br: 1140 kJ/mol 324 kJ/mol -1,092 kJ/mol 1,092 kJ/mol A) D) -95 kJ/mol 1,187 kJ/mol B) E) 95 kJ/mol C) Ans: C

34. Which of the elements listed below would most likely form an *ionic bond* when bonded to oxygen? A) Cl B) C C) O D) H E) Ca

Ans: E

- 35. Arrange the elements C, O, and H in order of increasing electronegativity
 - $A) \quad C < O < H$
 - $\mathbf{B}) \quad \mathbf{H} < \mathbf{C} < \mathbf{O}$
 - C > H < O
 - D) O < C < H
 - $\mathbf{E}) \quad \mathbf{H} < \mathbf{O} < \mathbf{C}$

Ans: B

36. A polar covalent bond would form in which one of the following pairs of atoms? A) Cl - Cl B) Si - Si C) Ca - Cl D) Cr - Br E) P - Cl Ans: E 37. Classify the C — Cl bond in CCl₄ as ionic, polar covalent, or nonpolar covalent.
A) ionic B) polar covalent C) nonpolar covalent

Ans: B

38. The total number of valence electrons in the molecule P_2O_5 is A) 11 B) 22 C) 23 D) 40 E) 70

Ans: D

39. Which of the following ionic solids would have the largest lattice energy? A) KF B) KI C) LiF D) LiI E) NaF

Ans: C

40. Which one of the following is most likely to be a covalent compound? A) Rb₂O B) BaO C) SrO D) SeO₂ E) MnO₂

Ans: D

	1.00728 amu	mass of neutron = 1.00866 amu
$c = 3.00 \times 10^8 \text{ m/s}$		F = 96500 C/(mol of e) = 96500 J/(V mol of e)
$K = {}^{o}C + 273.15$	3	R = 0.08206 (L atm)/(mol K) = 8.314 J/(mol J)
$1 g = 6.022 \times 10^{23}$	'amu	1 atm = 760 mm Hg
$1 \text{ mL} = 1 \text{ cm}^3$		
Temperature scales	/Conversion:	
• $T_{K} = T_{C} + 273$	(Celsius to Kelvin)	
• $T_C = T_K - 273$	(Kelvin to Celsius)	
• $T_{\mathbf{F}} = (1.8 \times T_{\mathbf{C}}) +$	+ 32 (Celsius to Fahrenhe	eit)
• $T_C = (T_F - 32)$	/ 1.8 (Fahrenheit to Celsiu	18)
D. (1		
Percent by mass	=[mas	$\frac{\text{mass of solute}}{\text{ss of solute} + \text{mass of solvent}} \times 100\%$
True common and co	- 1	
Mole fraction of sol	lution: $\mathbf{X}_{\mathbf{A}} =$	moles of solute A
		moles of solute A + moles of solvent B
	r of moles of solute in 1 L o	of solution:
Molarity = number		
Molarity = number Molarity	=	moles of solute
Molarity = number Molarity	=	moles of solute Liters of solution
Molarity = number Molarity Molality = number	= • of moles of solute dissolve	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent:
Molarity = number Molarity Molality = number Molality	= of moles of solute dissolve =	moles of solute Liters of solution ed in 1 kg (1000 g) of solvent: moles of solute
Molarity = number Molarity Molality = number Molality	= of moles of solute dissolve =	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u>
Molarity = number Molarity Molality = number Molality	= of moles of solute dissolve =	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)
Molarity = number Molarity Molality = number Molality Density = Mass / Y	= of moles of solute dissolve = Volume.	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)
Molarity = number Molality Molality = number Molality Density = Mass / ⁷	= of moles of solute dissolve = Volume.	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)
Molarity = number Molarity Molality = number Molality Density = Mass / `	= of moles of solute dissolve = Volume.	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)
Molarity = number Molarity Molality = number Molality Density = Mass / Y	= c of moles of solute dissolve = Volume.	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)
Molarity = number Molarity Molality = number Molality Density = Mass / Y	= of moles of solute dissolve = Volume.	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)
Molarity = number Molarity Molality = number Molality Density = Mass / `	= of moles of solute dissolve = Volume.	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)
Molarity = number Molarity Molality = number Molality Density = Mass /	= of moles of solute dissolve = Volume.	<u>moles of solute</u> Liters of solution ed in 1 kg (1000 g) of solvent: <u>moles of solute</u> Mass of solvent (1 kg)