## PHYS 2326 University Physics II –

## HOMEWORK- SET #1

**CHAPTERS: 23, 24, 25, 26** 

| CII. 23.—- |                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.         | e (uniform linear density = $9.0 \text{ nC/m}$ ) is distributed along the $x$ axis from $x = 0$ to $x$ m. Determine the magnitude of the electric field at a point on the $x$ axis with $x = 4$ . |
| m          |                                                                                                                                                                                                   |
| a.         | 81 N/C                                                                                                                                                                                            |
| b.         | 74 N/C                                                                                                                                                                                            |
| c.         | 61 N/C                                                                                                                                                                                            |
| d.         | 88 N/C                                                                                                                                                                                            |
| e.         | 20 N/C                                                                                                                                                                                            |
| SOLUTIO    | ======<br>N:                                                                                                                                                                                      |
|            | =====                                                                                                                                                                                             |





Charge: dq = x.dx

Electric field: 
$$d\vec{E} = ke \cdot \frac{dq}{R^2} \hat{x}$$

$$R = D - x$$

$$dE = ke \frac{dq}{(D-x)^2} = ke \cdot \frac{\partial \cdot dx}{(D-x)^2}$$

$$E = \int dE = ke \cdot \lambda \cdot \int_{0}^{3m} \frac{dx}{(D-x)^{2}}$$

Change variables: 
$$y = [x = y + D]$$

$$y = x - D \quad \text{of } x = 0 : y = -4m$$

$$x = 3 : y = -1m$$

 $E = ke \cdot \lambda \cdot \int \frac{dy}{y^2} =$ 

$$= ke \cdot \lambda \cdot (-\frac{1}{3}) \Big[ \frac{1}{4} = ke \cdot \lambda \cdot (-1) \left\{ -1 + \frac{1}{4} \right\} \\ = ke \cdot \lambda \cdot \left\{ 1 - \frac{1}{4} \right\} = ke \cdot \lambda \cdot \frac{3}{4}$$



- **a.** 64 N/C
- **b.** 133 N/C
- c. 48 N/C
- **d.** 85 N/C
- e. 34 N/C

\_\_\_\_\_

SOLUTION:

\_\_\_\_\_



- 3. A long nonconducting cylinder (radius = 6.0 mm) has a nonuniform volume charge density given by  $\alpha r^2$ , where  $\alpha = 6.2 \text{ mC/m}^5$  and r is the distance from the axis of the cylinder. What is the magnitude of the electric field at a point 2.0 mm from the axis?
  - a. 1.4 N/C
  - **b.** 1.6 N/C
  - **c.** 1.8 N/C
  - **d.** 2.0 N/C
  - **e.** 5.4 N/C

====== SOLUTION:



| 4. | dist | A solid nonconducting sphere (radius = $12 \text{ cm}$ ) has a charge of uniform density ( $30 \text{ nC/m}^3$ ) distributed throughout its volume. Determine the magnitude of the electric field $15 \text{ cm}$ from the center of the sphere. |  |  |  |
|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | a.   | 22 N/C                                                                                                                                                                                                                                           |  |  |  |
|    | b.   | 49 N/C                                                                                                                                                                                                                                           |  |  |  |
|    | c.   | 31 N/C                                                                                                                                                                                                                                           |  |  |  |
|    | d.   | 87 N/C                                                                                                                                                                                                                                           |  |  |  |
|    | e.   | 26 N/C                                                                                                                                                                                                                                           |  |  |  |
|    |      |                                                                                                                                                                                                                                                  |  |  |  |



| Ch 25         | <br> | <br> |
|---------------|------|------|
| Cn. 25======= | <br> | <br> |

- 5. A particle ( $q = +5.0 \,\mu\text{C}$ ) is released from rest when it is 2.0 m from a charged particle which is held at rest. After the positively charged particle has moved 1.0 m toward the fixed particle, it has a kinetic energy of 50 mJ. What is the charge on the fixed particle?
  - **a.** -2.2 *μ*C
  - **b.** +6.7  $\mu$ C
  - **c.**  $-2.7 \mu C$
  - **d.**  $+8.0 \,\mu\text{C}$
  - **e.** -1.1 *μ*C





| 6. | Two large parallel conducting plates are 8.0 cm apart and carry equal but opposite charges  |
|----|---------------------------------------------------------------------------------------------|
|    | on their facing surfaces. The magnitude of the surface charge density on either of the      |
|    | facing surfaces is $2.0 \text{ nC/m}^2$ . Determine the magnitude of the electric potential |
|    | difference between the plates.                                                              |

- **a.** 36 V
- **b.** 27 V
- **c.** 18 V
- **d.** 45 V
- **e.** 16 V

|--|



7. Determine the energy stored in  $C_2$  when  $C_1$  = 15  $\mu$ F,  $C_2$  = 10  $\mu$ F,  $C_3$  = 20  $\mu$ F, and  $V_0$  = 18 V.



- **a.** 0.72 mJ
- **b.** 0.32 mJ
- **c.** 0.50 mJ
- **d.** 0.18 mJ
- **e.** 1.60 mJ

====== SOL ======





| 8. | A 30- $\mu$ F capacitor is charged to an unknown potential $V_0$ and then connected across an     |
|----|---------------------------------------------------------------------------------------------------|
|    | initially uncharged $10-\mu F$ capacitor. If the final potential difference across the $10-\mu F$ |
|    | capacitor is 20 V, determine $V_0$ .                                                              |

| _   | 13 | ₹ 7  |
|-----|----|------|
| a . | 13 | - \/ |
| а.  |    |      |

======= SOL ======

**b.** 27 V

**c.** 20 V

**d.** 29 V

**e.** 60 V

