
Chapter 25 

Electric Potential 



Electrical Potential Energy 

 When a test charge is placed in an electric field, it 

experiences a force 

   

 The force is conservative 

 If the test charge is moved in the field by some 

external agent, the work done by the field is the 

negative of the work done by the external agent 

      is an infinitesimal displacement vector that is 

oriented tangent to a path through space 
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Electric Potential Energy, cont 

 The work done by the electric field is  

 

 As this work is done by the field, the potential 

energy of the charge-field system is changed 

by ΔU = 

 For a finite displacement of the charge from A 

to B, 
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Electric Potential Energy, final 

 Because the force is conservative, the line 

integral does not depend on the path taken 

by the charge 

 This is the change in potential energy of the 

system 



Electric Potential 

 The potential energy per unit charge, U/qo, is 
the electric potential  

 The potential is characteristic of the field only 

 The potential energy is characteristic of the charge-field 
system 

 The potential is independent of the value of qo 

 The potential has a value at every point in an 
electric field 

 The electric potential is  
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Electric Potential, cont. 

 The potential is a scalar quantity 

 Since energy is a scalar 

 As a charged particle moves in an electric 

field, it will experience a change in potential 
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Electric Potential, final 

 The difference in potential is the 
meaningful quantity 

 We often take the value of the potential to 
be zero at some convenient point in the 
field 

 Electric potential is a scalar 
characteristic of an electric field, 
independent of any charges that may be 
placed in the field 



Work and Electric Potential 

 Assume a charge moves in an electric field 

without any change in its kinetic energy 

 

 The work W performed on the charge is 

 

                          W = ΔU = q ΔV 



Units 

 1 V = 1 J/C 

 V is a volt 

 It takes one joule of work to move a 1-coulomb 
charge through a potential difference of 1 volt 

 In addition, 1 N/C = 1 V/m 

 This indicates we can interpret the electric field as 
a measure of the rate of change with position of 
the electric potential 



Electron-Volts 

 Another unit of energy that is commonly used in 

atomic and nuclear physics is the electron-volt 

 

 One electron-volt is defined as the energy a 

charge-field system gains or loses when a charge 

of magnitude e (an electron or a proton) is moved 

through a potential difference of 1 volt 

 

 1 eV = 1.60 x 10-19 J 



Potential Difference in a 

Uniform Field 

 The equations for electric potential can be 

simplified if the electric field is uniform: 

 

 The negative sign indicates that the electric 

potential at point B is lower than at point A 

 

 Electric field lines always point in the direction of 

decreasing electric potential   
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Energy and the Direction of 

Electric Field 

 When the electric field is 

directed downward,  point 

B is at a lower potential 

than point A 

 When a positive test 

charge moves from A to B, 

the charge-field system 

loses potential energy 

 Use the active figure to 

compare the motion in the 

electric field to the motion 

in a gravitational field 
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More About Directions 

 A system consisting of a positive charge and an 
electric field loses electric potential energy when the 
charge moves in the direction of the field 

 
 An electric field does work on a positive charge when the 

charge moves in the direction of the electric field 

 

 The charged particle gains kinetic energy equal to 
the potential energy lost by the charge-field system 

 
 Another example of Conservation of Energy 



Directions, cont. 

 If qo is negative, then ΔU is positive 

 

 A system consisting of a negative charge and 

an electric field gains potential energy when 

the charge moves in the direction of the field 

 

 In order for a negative charge to move in the 

direction of the field, an external agent must do 

positive work on the charge 



Equipotentials 

 Point B is at a lower 

potential than point A 

 Points B and C are at the 

same potential 

 All points in a plane 

perpendicular to a uniform 

electric field are at the 

same electric potential 

 The name equipotential 

surface is given to any 

surface consisting of a 

continuous distribution of 

points having the same 

electric potential 



Charged Particle in a Uniform 

Field, Example 

 A positive charge is 
released from rest and 
moves in the direction of the 
electric field 

 The change in potential is 
negative 

 The change in potential 
energy is negative 

 The force and acceleration 
are in the direction of the 
field 

 Conservation of Energy can 
be used to find its speed 



Potential and Point Charges 

 A positive point charge 

produces a field directed 

radially outward 

 The potential difference 

between points A and B will 

be:                      Integrate:  
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Potential and Point Charges, 

cont. 

 The electric potential is independent of the 

path between points A and B 

 It is customary to choose a reference 

potential of V = 0 at rA = ∞ 

 Then the potential at some point r is  
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Electric Potential of a Point 

Charge 

 The electric potential in 

the plane around a 

single point charge is 

shown 

 The red line shows the 

1/r nature of the 

potential 



Electric Potential with Multiple 

Charges 

 The electric potential due to several point 
charges is the sum of the potentials due to 
each individual charge 

 This is another example of the superposition 
principle 

 The sum is the algebraic sum 

 

 

 V = 0 at r = ∞ 
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Electric Potential of a Dipole 

 The graph shows the 

potential (y-axis) of an 

electric dipole 

 The steep slope 

between the charges 

represents the strong 

electric field in this 

region 



Potential Energy of Multiple 

Charges 

 Consider two charged 
particles 

 The potential energy of 
the system is 

 

 

 
 Use the active figure to 

move the charge and see 
the effect on the potential 
energy of the system 
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More About U of Multiple 

Charges 

 If the two charges are the same sign, U is 

positive and work must be done to bring the 

charges together 

 If the two charges have opposite signs, U is 

negative and work is done to keep the 

charges apart 



U with Multiple Charges, final 

 If there are more than 
two charges, then find 
U for each pair of 
charges and add them 

 For three charges: 

 

 
 

 The result is independent 
of the order of the 
charges 

1 3 2 31 2

12 13 23

e

q q q qq q
U k

r r r

 
   

 



Finding E From V 

 Assume, to start, that the field has only an x 
component 

 

 

 Similar statements would apply to the y and z 
components 

 Equipotential surfaces must always be 
perpendicular to the electric field lines passing 
through them 
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E and V for an Infinite Sheet of 

Charge 

 The equipotential lines 

are the dashed blue 

lines 

 The electric field lines 

are the brown lines 

 The equipotential lines 

are everywhere 

perpendicular to the 

field lines 



E and V for a Point Charge 

 The equipotential lines 

are the dashed blue 

lines 

 The electric field lines 

are the brown lines 

 The equipotential lines 

are everywhere 

perpendicular to the 

field lines 



E and V for a Dipole 

 The equipotential lines 

are the dashed blue 

lines 

 The electric field lines 

are the brown lines 

 The equipotential lines 

are everywhere 

perpendicular to the 

field lines 



Electric Field from Potential, 

General 

 In general, the electric potential is a function 

of all three dimensions 

 Given V (x, y, z) you can find Ex, Ey and Ez as 

partial derivatives 
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Electric Potential for a 

Continuous Charge Distribution 

 Consider a small 

charge element dq 

 Treat it as a point charge 

 The potential at some 

point due to this charge 

element is  
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V for a Continuous Charge 

Distribution, cont. 

 To find the total potential, you need to 

integrate to include the contributions from all 

the elements 

 

 

 This value for V uses the reference of V = 0 when 

P is infinitely far away from the charge 

distributions 
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V From a Known E 

 If the electric field is already known from 

other considerations, the potential can be 

calculated using the original approach  

 

 

 If the charge distribution has sufficient symmetry, 

first find the field from Gauss’ Law and then find 

the potential difference between any two points 

 Choose V = 0 at some convenient point 
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Problem-Solving Strategies 

 Conceptualize 

 Think about the individual charges or the charge 
distribution 

 Imagine the type of potential that would be 
created 

 Appeal to any symmetry in the arrangement of the 
charges 

 Categorize 

 Group of individual charges or a continuous 
distribution? 



Problem-Solving Strategies, 2 

 Analyze 

 General 

 Scalar quantity, so no components 

 Use algebraic sum in the superposition principle 

 Only changes in electric potential are significant 

 Define V = 0 at a point infinitely far away from the 

charges 

 If the charge distribution extends to infinity, then choose 

some other arbitrary point as a reference point 



Problem-Solving Strategies, 3 

 Analyze, cont 

 If a group of individual charges is given 

 Use the superposition principle and the algebraic sum 

 If a continuous charge distribution is given 

 Use integrals for evaluating the total potential at some point 

 Each element of the charge distribution is treated as a point 

charge 

 If the electric field is given 

 Start with the definition of the electric potential 

 Find the field from Gauss’ Law (or some other process) if 

needed 



Problem-Solving Strategies, 

final 

 Finalize 

 Check to see if the expression for the electric 

potential is consistent with your mental 

representation 

 Does the final expression reflect any symmetry? 

 Image varying parameters to see if the 

mathematical results change in a reasonable way 



V for a Uniformly Charged 

Ring 

 P is located on the 

perpendicular central 

axis of the uniformly 

charged ring  

 The ring has a radius a 

and a total charge Q 
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V for a Uniformly Charged Disk 

 The ring has a radius R 

and surface charge 

density of σ 

 P is along the 

perpendicular central 

axis of the disk 
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V for a Finite Line of Charge 

 A rod of line ℓ has a 

total charge of Q and a 

linear charge density of 

λ 
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V Due to a Charged Conductor 

 Consider two points on the 
surface of the charged 
conductor as shown 

    is always perpendicular to 
the displacement  

 Therefore,   

 Therefore, the potential 
difference between A and B 
is also zero 
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V Due to a Charged Conductor, 

cont. 

 V is constant everywhere on the surface of a 
charged conductor in equilibrium 
 ΔV = 0 between any two points on the surface 

 The surface of any charged conductor in 
electrostatic equilibrium is an equipotential surface 

 Because the electric field is zero inside the 
conductor, we conclude that the electric potential is 
constant everywhere inside the conductor and equal 
to the value at the surface 



E Compared to V 

 The electric potential is a 

function of r 

 The electric field is a 

function of r2 

 The effect of a charge on 

the space surrounding it: 

 The charge sets up a 

vector electric field which 

is related to the force 

 The charge sets up a 

scalar potential which is 

related to the energy 



Irregularly Shaped Objects 

 The charge density is high where the radius of 

curvature is small 

 And low where the radius of curvature is large 

 The electric field is large near the convex points 

having small radii of curvature and reaches very 

high values at sharp points 



Cavity in a Conductor 

 Assume an irregularly 

shaped cavity is inside 

a conductor 

 Assume no charges are 

inside the cavity 

 The electric field inside 

the conductor  must be 

zero 



Cavity in a Conductor, cont 

 The electric field inside does not depend on the 
charge distribution on the outside surface of the 
conductor 

 For all paths between A and B, 

 

 

 A cavity surrounded by conducting walls is a field-
free region as long as no charges are inside the 
cavity 
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Corona Discharge 

 If the electric field near a conductor is 

sufficiently strong, electrons resulting from 

random ionizations of air molecules near the 

conductor accelerate away from their parent 

molecules 

 These electrons can ionize additional 

molecules near the conductor 



Corona Discharge, cont. 

 This creates more free electrons 

 The corona discharge is the glow that 
results from the recombination of these free 
electrons with the ionized air molecules 

 The ionization and corona discharge are 
most likely to occur near very sharp points 



Millikan Oil-Drop Experiment – 

Experimental Set-Up 

PLAY 
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../../Active_Figures/active_figures/AF_2522.html


Millikan Oil-Drop Experiment 

 Robert Millikan measured e, the magnitude of 

the elementary charge on the electron 

 He also demonstrated the quantized nature 

of this charge 

 Oil droplets pass through a small hole and 

are illuminated by a light 



Oil-Drop Experiment, 2 

 With no electric field 

between the plates, the 

gravitational force and 

the drag force (viscous) 

act on the electron 

 The drop reaches 

terminal velocity with 

D mF g



Oil-Drop Experiment, 3 

 When an electric field is 
set up between the 
plates 
 The upper plate has a 

higher potential 

 The drop reaches a 
new terminal velocity 
when the electrical 
force equals the sum of 
the drag force and 
gravity 



Oil-Drop Experiment, final 

 The drop can be raised and allowed to fall 

numerous times by turning the electric field on and 

off 

 After many experiments, Millikan determined: 

 q = ne where n = 0, -1, -2, -3, … 

 e = 1.60 x 10-19 C 

 This yields conclusive evidence that charge is 

quantized 

 Use the active figure to conduct a version of the 

experiment 



Van de Graaff  

Generator 

 Charge is delivered continuously to a 
high-potential electrode by means of a 
moving belt of insulating material 

 The high-voltage electrode is a hollow 
metal dome mounted on an insulated 
column 

 Large potentials can be developed by 
repeated trips of the belt 

 Protons accelerated through such large 
potentials receive enough energy to 
initiate nuclear reactions 



Electrostatic Precipitator 

 An application of electrical discharge in gases 

is the electrostatic precipitator 

 It removes particulate matter from 

combustible gases 

 The air to be cleaned enters the duct and 

moves near the wire 

 As the electrons and negative ions created by 

the discharge are accelerated toward the 

outer wall by the electric field, the dirt 

particles become charged 

 Most of the dirt particles are negatively 

charged and are drawn to the walls by the 

electric field 



Application – Xerographic 

Copiers 

 The process of xerography is used for 

making photocopies 

 Uses photoconductive materials 

 A photoconductive material is a poor conductor of 

electricity in the dark but becomes a good electric 

conductor when exposed to light 



The Xerographic Process 



Application – Laser Printer 

 The steps for producing a document on a laser 
printer is similar to the steps in the xerographic 
process 

 A computer-directed laser beam is used to 
illuminate the photoconductor instead of a lens 


