Chapter 32

Inductance

Joseph Henry

- 1797 1878
- American physicist
- First director of the Smithsonian
- Improved design of electromagnet
- Constructed one of the first motors
- Discovered self-inductance
- Unit of inductance is named in his honor

Some Terminology

- Use emf and current when they are caused by batteries or other sources
- Use *induced emf* and *induced current* when they are caused by changing magnetic fields
- When dealing with problems in electromagnetism, it is important to distinguish between the two situations

Self-Inductance

- When the switch is closed, the current does not immediately reach its maximum value
- Faraday's law can be used to describe the effect

C Thomson Higher Education

Self-Inductance, 2

- As the current increases with time, the magnetic flux through the circuit loop due to this current also increases with time
- This increasing flux creates an induced emf in the circuit

Self-Inductance, 3

- The direction of the induced emf is such that it would cause an induced current in the loop which would establish a magnetic field opposing the change in the original magnetic field
- The direction of the induced emf is opposite the direction of the emf of the battery
- This results in a gradual increase in the current to its final equilibrium value

Self-Inductance, 4

- This effect is called **self-inductance**
 - Because the changing flux through the circuit and the resultant induced emf arise from the circuit itself
- The emf ϵ_L is called a self-induced emf

Self-Inductance, Equations

- An <u>induced emf</u> is always proportional to the time rate of change of the current
 - The <u>emf</u> is proportional to the flux, which is proportional to the field and the field is proportional to the current

$$\varepsilon_L = -L \frac{dI}{dt}$$

 L is a constant of proportionality called the inductance of the coil and it depends on the geometry of the coil and other physical characteristics

Inductance of a Coil

 A closely spaced coil of N turns carrying current / has an inductance of

$$L = \frac{N\Phi_B}{I} = -\frac{\varepsilon_L}{dI/dt}$$

- Note, $\varepsilon_{L} = -d\Phi_{L}/dt$ and $\varepsilon_{L} = -L\frac{dI}{dt}$
- The inductance is a measure of the opposition to a change in current

Inductance Units

• The SI unit of inductance is the henry (H)

$$1H = 1\frac{V \cdot s}{A}$$

Named for Joseph Henry

Inductance of a Solenoid

- Assume a uniformly wound solenoid having N turns and length ?
 - Assume l is much greater than the radius of the solenoid
- The flux through each turn of area A is

$$\Phi_{B} = BA = \mu_{o} n I A = \mu_{o} \frac{N}{\ell} I A$$

Inductance of a Solenoid, cont

• The inductance is

$$L = \frac{N\Phi_B}{I} = \frac{\mu_o N^2 A}{\ell}$$

 This shows that L depends on the geometry of the object

RL Circuit, Introduction

- A circuit element that has a large selfinductance is called an inductor
- The circuit symbol is <u>-000</u>—
- We assume the self-inductance of the rest of the circuit is negligible compared to the inductor
 - However, even without a coil, a circuit will have some self-inductance

Effect of an Inductor in a Circuit

- The inductance results in a back emf
- Therefore, the <u>inductor in a circuit</u> opposes changes in current in that circuit.
 - The inductor attempts to keep the current the same way it was before the change occurred
 - The inductor can cause the circuit to be "sluggish" as it reacts to changes in the voltage

RL Circuit, Analysis

- An *RL* circuit contains an inductor and a resistor
- Assume S₂ is connected to a
- When switch S₁ is closed (at time t = 0), the current begins to increase
- At the same time, a back emf is induced in the inductor that opposes the original increasing current

Active Figure 32.2 (a)

Use the active figure to set R and L and see the effect on the current

RL Circuit, Analysis, cont.

 Applying Kirchhoff's loop rule to the previous circuit in the clockwise direction gives

$$\varepsilon - IR - L\frac{dI}{dt} = 0$$

• Looking at the current, we find

$$I = \frac{\varepsilon}{R} \left(1 - e^{-Rt/L} \right)$$

RL Circuit, Analysis, Final

- The inductor affects the current exponentially
- The current does not instantly increase to its final equilibrium value
- If there is no inductor, the exponential term goes to zero and the current would instantaneously reach its maximum value as expected

RL Circuit, Time Constant

 The expression for the current can also be expressed in terms of the time constant, τ, of the circuit

$$I = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau} \right)$$

- where $\tau = L / R$
- Physically, τ is the time required for the current to reach 63.2% of its maximum value

RL Circuit, Current-Time Graph, (1)

- The equilibrium value of the current is ɛ/R and is reached as t approaches infinity
- The current initially increases very rapidly
- The current then gradually approaches the equilibrium value
- Use the active figure to watch the graph

©2004 Thomson - Brooks/Cole

RL Circuit, Current-Time Graph, (2)

- The time rate of change of the current is a maximum at t = 0
- It falls off exponentially as *t* approaches infinity
- In general,

$$\frac{dI}{dt} = \frac{\varepsilon}{L} e^{-t/t}$$

- Now set S₂ to position b
- The circuit now contains just the right hand loop
- The battery has been eliminated
- The expression for the current becomes

$$I = \frac{\varepsilon}{R} e^{-t/\tau} = I_i e^{-t/\tau}$$

Active Figure 32.2 (b)

Use the active figure to change the values of R and L and watch the result on the graph

Energy in a Magnetic Field

- In a circuit with an inductor, the battery must supply more energy than in a circuit without an inductor
- Part of the energy supplied by the battery appears <u>as internal energy</u> in the resistor
- The remaining energy is stored in the magnetic field of the inductor

Energy in a Magnetic Field, cont.

• Looking at this energy (in terms of rate)

$$I\varepsilon = I^2 R + L I \frac{dI}{dt}$$

- Iε is the rate at which energy is being supplied by the battery
- I²R is the rate at which the energy is being delivered to the resistor
- Therefore, LI (dl/dt) must be the rate at which the energy is being stored in the magnetic field

Energy in a Magnetic Field, final

- Let U denote the energy stored in the inductor at any time
- The rate at which the energy is stored is

$$\frac{dU}{dt} = LI \frac{dI}{dt}$$

• To find the total energy, integrate:

$$U = L \int_0^l I \ dI = \frac{1}{2} L I^2$$

Energy Density of a Magnetic Field

Given U = ½ L I² and assume (for simplicity) a solenoid with L = μ_o n² V

$$U = \frac{1}{2}\mu_o n^2 V \left(\frac{B}{\mu_o n}\right)^2 = \frac{B^2}{2\mu_o} V$$

 Since V is the volume of the solenoid, the magnetic energy density, u_B is

$$u_{B} = \frac{U}{V} = \frac{B^{2}}{2\mu_{o}}$$

• This applies to any region in which a magnetic field exists (not just the solenoid)

Energy Storage Summary

- A resistor, inductor and capacitor all store energy through different mechanisms
 - Charged capacitor
 - Stores energy as electric potential energy
 - Inductor
 - When it carries a current, stores energy as magnetic potential energy
 - Resistor
 - Energy delivered is transformed into internal energy

Example: The Coaxial Cable

- Calculate L for the cable
- The total flux is

$$\Phi_{B} = \int B \, dA = \int_{a}^{b} \frac{\mu_{o} I}{2\pi r} \ell \, dr$$
$$= \frac{\mu_{o} I \ell}{2\pi} \ln\left(\frac{b}{a}\right)$$
Therefore L is

• Therefore, L is

$$L = \frac{\Phi_B}{I} = \frac{\mu_o \ell}{2\pi} \ln\left(\frac{b}{a}\right)$$

Mutual Inductance

- The magnetic flux through the area enclosed by a circuit often varies with time because of time-varying currents in nearby circuits
- This process is known as *mutual induction* because it depends on the interaction of two circuits

Mutual Inductance, 2

- The current in coil 1 sets up a magnetic field
- Some of the magnetic field lines pass through coil 2
- Coil 1 has a current I₁ and N₁ turns
- Coil 2 has N₂ turns

Mutual Inductance, 3

 The mutual inductance M₁₂ of coil 2 with respect to coil 1 is

$$M_{12} \equiv \frac{N_2 \Phi_{12}}{I_1}$$

 Mutual inductance depends on the geometry of both circuits and on their orientation with respect to each other

Induced emf in Mutual Inductance

 If current I₁ varies with time, the emf induced by coil 1 in coil 2 is

$$\varepsilon_{2} = -N_{2} \frac{d\Phi_{12}}{dt} = -M_{12} \frac{dI_{1}}{dt}$$

- If the current is in coil 2, there is a mutual inductance M_{21}
- If current 2 varies with time, the emf induced by coil 2 in coil 1 is

$$\varepsilon_1 = -M_{21} \frac{dI_2}{dt}$$

Mutual Inductance, Final

- In mutual induction, the emf induced in one coil is always proportional to the rate at which the current in the other coil is changing
- The mutual inductance in one coil is equal to the mutual inductance in the other coil

$$M_{12} = M_{21} = M_{21}$$

• The induced emf's can be expressed as

$$\varepsilon_1 = -M \frac{dI_2}{dt}$$
 and $\varepsilon_2 = -M \frac{dI_1}{dt}$

LC Circuits

- A capacitor is connected to an inductor in an LC circuit
- Assume the capacitor is initially charged and then the switch is closed
- Assume no resistance and no energy losses to radiation

©2004 Thomson - Brooks/Cole

Oscillations in an LC Circuit

- Under the previous conditions, the current in the circuit and the charge on the capacitor oscillate between maximum positive and negative values
- With zero resistance, no energy is transformed into internal energy
- Ideally, the oscillations in the circuit persist indefinitely
 - The idealizations are no resistance and no radiation

Oscillations in an LC Circuit, 2

- The capacitor is fully charged
 - The energy U in the circuit is stored in the electric field of the capacitor
 - The energy is equal to Q^2_{max} / 2C
 - The current in the circuit is zero
 - No energy is stored in the inductor
- The switch is closed

Oscillations in an LC Circuit, 3

- The current is equal to the rate at which the charge changes on the capacitor
 - As the capacitor discharges, the energy stored in the electric field decreases
 - Since there is now a current, some energy is stored in the magnetic field of the inductor
 - Energy is transferred from the electric field to the magnetic field

Oscillations in an LC Circuit, 4

- Eventually, the capacitor becomes fully discharged
 - It stores no energy
 - All of the energy is stored in the magnetic field of the inductor
 - The current reaches its maximum value
- The current now decreases in magnitude, recharging the capacitor with its plates having opposite their initial polarity

Oscillations in an *LC* Circuit, final

- The capacitor becomes fully charged and the cycle repeats
- The energy continues to oscillate between the inductor and the capacitor
- The total energy stored in the LC circuit remains constant in time and equals

$$U = U_C + U_L = \frac{Q^2}{2C} + \frac{1}{2}LI^2$$

- The potential energy ½kx² stored in the spring is analogous to the electric potential energy (Q_{max})²/(2C) stored in the capacitor
- All the energy is stored in the capacitor at t = 0
- This is analogous to the spring stretched to its amplitude

- The kinetic energy (½ mv²) of the spring is analogous to the magnetic energy (½ L l²) stored in the inductor
- At t = ¼ T, all the energy is stored as magnetic energy in the inductor
- The maximum current occurs in the circuit
- This is analogous to the mass at equilibrium

- At t = ½ T, the energy in the circuit is completely stored in the capacitor
- The polarity of the capacitor is reversed
- This is analogous to the spring stretched to -A

- At t = ¾ T, the energy is again stored in the magnetic field of the inductor
- This is analogous to the mass again reaching the equilibrium position

- At t = T, the cycle is completed
- The conditions return to those identical to the initial conditions
- At other points in the cycle, energy is shared between the electric and magnetic fields

Active Figure 32.11

Use the active figure to adjust the values and L and C and see the effects on the current

Time Functions of an *LC* Circuit

- In an LC circuit, charge can be expressed as a function of time
 - $Q = Q_{max} \cos (\omega t + \varphi)$
 - This is for an ideal LC circuit
- The angular frequency, ω , of the circuit depends on the inductance and the capacitance
 - It is the natural frequency of oscillation of the circuit

$$\omega = 1/\sqrt{LC}$$

Time Functions of an *LC* Circuit, 2

 The current can be expressed as a function of time

$$I = \frac{dQ}{dt} = -\omega Q_{max} \sin(\omega t + \varphi)$$

 The total energy can be expressed as a function of time

$$U = U_C + U_L = \frac{Q_{max}^2}{2c}\cos^2\omega t + \frac{1}{2}LI_{max}^2\sin^2\omega t$$

Charge and Current in an LC Circuit

- The charge on the capacitor oscillates between Q_{max} and -Q_{max}
- The current in the inductor oscillates between I_{max} and -I_{max}
- Q and I are 90° out of phase with each other
 - So when Q is a maximum, *I* is zero, etc.

Energy in an *LC* Circuit – Graphs

- The energy continually oscillates between the energy stored in the electric and magnetic fields
- When the total energy is stored in one field, the energy stored in the other field is zero

Notes About Real LC Circuits

- In actual circuits, there is always some resistance
- Therefore, there is some energy transformed to internal energy
- Radiation is also inevitable in this type of circuit
- The total energy in the circuit <u>continuously</u> <u>decreases</u> as a result of these processes

The RLC Circuit

- A circuit containing a resistor, an inductor and a capacitor is called an *RLC* Circuit
- Assume the resistor represents the total resistance of the circuit

Active Figure 32.15

Use the active figure to adjust R, L, and C. **Observe** the effect on the charge

RLC Circuit, Analysis

- The total energy is not constant, since there is a transformation to internal energy in the resistor at the rate of $dU/dt = -I^2 R$
 - Radiation losses are still ignored
- The circuit's operation can be expressed as

$$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{Q}{C} = 0$$

RLC Circuit Compared to Damped Oscillators

- The *RLC* circuit is analogous to a damped harmonic oscillator
- When R = 0
 - The circuit reduces to an LC circuit and is equivalent to no damping in a mechanical oscillator

RLC Circuit Compared to Damped Oscillators, cont.

• When R is small:

- The RLC circuit is analogous to light damping in a mechanical oscillator
- $Q = Q_{max} e^{-Rt/2L} \cos \omega_d t$
- ω_d is the angular frequency of oscillation for the circuit and

$$\omega_d = \left[\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right]^{\frac{1}{2}}$$

RLC Circuit Compared to Damped Oscillators, final

- When R is very large, the oscillations damp out very rapidly
- There is a critical value of R above which no oscillations occur

$$R_{c} = \sqrt{4L/C}$$

- If $R = R_C$, the circuit is said to be *critically damped*
- When $R > R_c$, the circuit is said to be *overdamped*

Damped RLC Circuit, Graph

- The maximum value of Q decreases after each oscillation
 - $R < R_C$
- This is analogous to the amplitude of a damped spring-mass system

Summary: Analogies Between Electrical and Mechanic Systems

TABLE 32.1

Analogies Betwee	n Electrical	and Mechanical	Systems
------------------	--------------	----------------	---------

Electric Circuit		One-Dimensional Mechanical System
Charge	$Q \leftrightarrow x$	Position
Current	$I \leftrightarrow v_x$	Velocity
Potential difference	$\Delta V \leftrightarrow F_x$	Force
Resistance	$R \leftrightarrow b$	Viscous damping coefficient
Capacitance	$C \leftrightarrow 1/k$	(k = spring constant)
Inductance	$L \leftrightarrow m$	Mass
Current = time derivative of charge	$I = \frac{dQ}{dt} \leftrightarrow v_x = \frac{dx}{dt}$	Velocity = time derivative of position
Rate of change of current = second time derivative of charge	$\frac{dI}{dt} = \frac{d^2Q}{dt^2} \iff a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$	Acceleration = second time derivative of position
Energy in inductor	$U_L = \frac{1}{2}LI^2 \iff K = \frac{1}{2}mv^2$	Kinetic energy of moving object
Energy in capacitor	$U_C = \frac{1}{2} \frac{Q^2}{C} \leftrightarrow U = \frac{1}{2} k x^2$	Potential energy stored in a spring
Rate of energy loss due to resistance	$I^2R \leftrightarrow bv^2$	Rate of energy loss due to friction
<i>RLC</i> circuit	$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{Q}{C} = 0 \iff m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$	Damped object on a spring

© Thomson Higher Education