Chapter 32

Inductance




Joseph Henry 2ot

e 1797 -1878
e American physicist

e First director of the
Smithsonian

e Improved design of
electromagnet

e Constructed one of the first
motors

e Discovered self-inductance

e Unit of iInductance is named
In his honor




Some Terminology :

e Use emf and current when they are caused
by batteries or other sources

e Use induced emf and induced current
when they are caused by changing magnetic
fields

e \When dealing with problems in
electromagnetism, it iIs important to
distinguish between the two situations



Self-Inductance

e \When the switch is
closed, the current
does not immediately
reach its maximum
value

e Faraday’s law can be
used to describe the
effect




Self-Inductance, 2 -

e As the current increases with time, the
magnetic flux through the circuit loop due to
this current also increases with time

e This increasing flux creates an induced
emf in the circuit



Self-Inductance, 3

e The direction of the iInduced emf Is such
that it would cause an induced current In

field opposing the change in the original
magnetic field

e The direction of the induced emf is

opposite the direction of the emf of the
battery

e This results in a gradual increase in the
current to its final equilibrium value

the loop which would establish a magnetic



Self-Inductance, 4 544

e This effect iIs called self-inductance

e Because the changing flux through the
circuit and the resultant induced emf
arise from the circuit itself

e The emf g Is called a self-induced emf



Self-Inductance, Equations secs

e An induced emf is always proportional to the time
rate of change of the current

e The emf is proportional to the flux, which is
proportional to the field and the field is
proportional to the current

£ = —Lﬂ
dt
e L Is a constant of proportionality called the
iInductance of the coll and it depends on the
geometry of the coil and other physical

characteristics




Inductance of a Coll

e A closely spaced coll of N turns carrying
current | has an inductance of

L:NQB_ £

| dl/dt

e Note, & =-d®, /dt and & =L+

e The inductance is a measure of the
opposition to a change in current



Inductance Units
e The Sl unit of inductance is the henry (H)
H=1""S
A

e Named for Joseph Henry




Inductance of a Solenoid -4

e Assume a uniformly wound solenoid
having N turns and length £

e Assume { is much greater than the radius of the
solenoid

e The flux through each turn of area A is
N

D, =BA=/JOnIA=,uO?IA



Inductance of a Solenoid, cont

e The inductance is

ND, pN°A
| 14

| —

e This shows that L depends on the
geometry of the object




RL Circuit, Introduction

e A circuit element that has a large self-
iInductance is called an inductor

e The circuit symbol is 000"

e We assume the self-inductance of the rest of
the circuit is negligible compared to the
iInductor

However, even without a coll, a circuit will have
some self-inductance



Effect of an Inductor Iin a 3T

Circuit .

e The inductance results In a back emf

e Therefore, the inductor in a circuit opposes
changes in current in that circulit.

e The inductor attempts to keep the current the
same way It was before the change occurred

e The inductor can cause the circuit to be
“sluggish” as it reacts to changes in the voltage




RL Circuit, Analysis 555:
An RL circuit contains an oo

Inductor and a resistor

Assume S, is connected to a

When switch S, is closed (at 5. R

. . a 2

time t = 0), the current begins %/O—Wy—
to increase S cL

~
$

At the same time, a back emf I
Is iInduced In the inductor that E

opposes the original .
Increasing current
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RL Circuit, Analysis, cont. :

e Applying Kirchhoff’s loop rule to the
previous circuit in the clockwise direction

gives

£IRLﬂO

dt

e Looking at the current, we find

| = %(1— e )



RL Circuit, Analysis, Final :

e The inductor affects the current exponentially

e The current does not instantly increase to Its
final equilibrium value

e If there is no inductor, the exponential term
goes to zero and the current would
Instantaneously reach its maximum value as
expected



RL Circuit, Time Constant .

e The expression for the current can also be
expressed In terms of the time constant, t, of
the circuit

| = %(1— e )

e wheret=L/R

e Physically, tis the time required for the
current to reach 63.2% of Its maximum value



RL Circuit, Current-Time Graph, (1) 3

e The equilibrium o
value of the current
IS €/R and Is reached
as t approaches

o2 I
Infinity
e The current initially E/R
Increases very rapidly c
0.632 5

e The current then
gradually approaches
the equilibrium value

e Use the active figure
to watch the graph
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RL Circult, Current-Time HE

Graph, (2) :

e The time rate of change ol
of the current is a

maximum att =0
EILL———

e [t falls off exponentially
as t approaches infinity

e In general,

dlzeeﬂ,
dt L




RL Circuit Without A Battery eoco

Now set S, to position b

The circult now contains

just the right hand loop _%/OQ_W\,i
S, | G,
The battery has been \
eliminated EL
The expression for the e
current becomes & =
s _t _t
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Active Figure 32.2 (b) :

Use the e
active figure o { N E
to change the =1 ' 3
values of R O o
and L and w ;,0
watch the 00]
result on the
graph
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Energy in a Magnetic Field :

e In a circuit with an inductor, the battery
must supply more energy than in a circuit
without an inductor

e Part of the energy supplied by the battery
appears as internal energy in the resistor

e The remaining energy is stored in the
magnetic field of the inductor




Energy in a Magnetic Field, cont. 3

e Looking at this energy (in terms of rate)

I
le=I"R+LI d—
dt
e legis the rate at which energy is being supplied by

the battery

e I°R is the rate at which the energy is being
delivered to the resistor

o Therefore, LI (dI/dt) must be the rate at which the
energy Is being stored in the magnetic field



Energy in a Magnetic Field, final 0o

e Let U denote the energy stored in the
Inductor at any time

e The rate at which the energy Is stored is
du _ di
dt dt

e To find the total energy, integrate:

U:LIII dl= 2012
0 2



Energy Density of a Magnetic Field o

e Given U =% L |12 and assume (for simplicity) a
solenoid with L = p, n?V

2 2
o Lpnv[ B ] By
2 u,n 21,

e Since V is the volume of the solenoid, the
magnetic energy density, ug is

U B?
V. 2u,

Ug

e This applies to any region in which a magnetic field
exists (not just the solenoid)



Energy Storage Summary

e A resistor, inductor and capacitor all store
energy through different mechanisms
Charged capacitor
Stores energy as electric potential energy

Inductor

When it carries a current, stores energy as magnetic
potential energy

Resistor
Energy delivered is transformed into internal energy



Example: The Coaxial Cable

e Calculate L for the
cable

e The total flux is

_ uolfm(gj
21T a

e Therefore, L iIs

I 21T a




Mutual Inductance :

e The magnetic flux through the area enclosed
by a circuit often varies with time because of
time-varying currents in nearby circuits

e This process iIs known as mutual induction
because it depends on the interaction of two
circuits



coes
1
Mutual Inductance, 2 :
e The currentin coll 1
sets up a magnetic field
Coil 1 N
e Some of the magnetic -
field lines pass through e

coll 2

e Colil 1 has a current I,
and N, turns

e Coll 2 has N, turns

@
E
S
[
%)
=
NJN



Mutual Inductance, 3 .

e The mutual inductance My, of coil 2 with
respectto coil 11s

N, O
MlZE 2 12

Il
e Mutual inductance depends on the geometry
of both circuits and on their orientation with
respect to each other



Induced emf in Mutual

Inductance :

e If current |, varies with time, the emf
iInduced by coil 1 in coll 2 is

dd dl

e If the current is in coll 2, there Is a mutual
inductance M.,

e If current 2 varies with time, the emf induced
by coil 2 in coll 1is di,
&=—-M,, —=
dt




Mutual Inductance, Final 3

e |In mutual induction, the emf induced Iin one
coll is always proportional to the rate at which
the current in the other coll is changing

e The mutual inductance in one coll is equal to
the mutual inductance in the other coll

o My, =M,, =M
e The induced emf’s can be expressed as
d| dl,

glz—Md—t2 and ¢, =- e



L C Circuits

e A capacitor is

connected to an
Inductor in an LC circuit

e Assume the capacitor is
initially charged and Al
then the switch is 10,
closed

e Assume no resistance C'/ 5

and no energy losses S
to radiation

ooooooooooooooooooooooo



Oscillations in an LC Circult

e Under the previous conditions, the current in
the circuit and the charge on the capacitor

oscillate between maximum positive and
negative values

e With zero resistance, no energy Is
transformed into internal energy

e |deally, the oscillations in the circuit persist
iIndefinitely

The idealizations are no resistance and no
radiation



Oscillations in an LC Circuit, 2

e The capacitor is fully charged

The energy U in the circuit is stored in the electric
field of the capacitor

The energy is equal to Q% / 2C
The current in the circuit is zero
No energy is stored in the inductor

e The switch is closed



Oscillations in an LC Circuit, 3

e The current is equal to the rate at which the
charge changes on the capacitor

As the capacitor discharges, the energy stored in
the electric field decreases

Since there is now a current, some energy Is
stored in the magnetic field of the inductor

Energy is transferred from the electric field to the
magnetic field



Oscillations in an LC Circuit, 4

e Eventually, the capacitor becomes fully
discharged
It stores no energy

All of the energy is stored in the magnetic field of
the inductor

The current reaches its maximum value

e The current now decreases in magnitude,
recharging the capacitor with its plates having
opposite their initial polarity



Oscillations 1n an LC Circult,
final

e The capacitor becomes fully charged and the

cycle repeats

e The energy continues to oscillate between

the inductor and the capacitor

e The total energy stored in the LC circuit

remains constant in time and equals

2
U :UC+UL:§—C+%LI2



LC Circuit Analogy to Spring- | ss::

Mass System, 1 :

k v=0
W il
==
x=0
(a) t=0
+ )llli\\ :()

e The potential energy ¥2kx? stored in the spring is analogous to
the electric potential energy (Q,,.,)?/(2C) stored in the
capacitor

e All the energy Is stored in the capacitor att =0
e This is analogous to the spring stretched to its amplitude
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LC Circuit Analogy to Spring- |

Mass System, 2 :

.

Vinax
e

-t

e The kinetic energy (Y2 mv?) of the spring is analogous to the
magnetic energy (2 L 1°) stored in the inductor

e Att=%T, all the energy Is stored as magnetic energy in the
iInductor

e The maximum current occurs in the circuit
e This is analogous to the mass at equilibrium
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LC Circuit Analogy to Spring- |

Mass System, 3 -

e Att=1.T, the energy In the circuit is completely
stored in the capacitor

e The polarity of the capacitor Is reversed
e This Is analogous to the spring stretched to -A
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LC Circuit Analogy to Spring- | gs::

Mass System, 4 :

= “max

e Att=734T, the energy is again stored in the
magnetic field of the inductor

e This Is analogous to the mass again reaching the
equilibrium position

PLAY
ACTIVE FIGURE


../../Active_Figures/active_figures/AF_3211.html

LC Circuit Analogy to Spring- | gs::

Mass System, 5 -

(a) t=0

e Att=T, the cycle is completed
e The conditions return to those identical to the initial conditions

e At other points in the cycle, energy is shared between the
electric and magnetic fields
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Active Figure 32.11 :
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Time Functions of an LC oo
Circuit

e In an LC circuit, charge can be expressed as
a function of time

Q = Qmax COS (Wt + @)
This iIs for an ideal LC circuit

e The angular frequency, w, of the circuit
depends on the inductance and the
capacitance

It is the natural frequency of oscillation of the
circuit

w=7Jc



Time Functions of an LC 43
Circuit, 2

e The current can be expressed as a function
of time

| = %—? =-wQ__ Sin(wt+ @)
e The total energy can be expressed as a
function of time

Qriax 2 1 2 .2
U=U_.+U, = cos“wt+—LI-  sin® wt
2C 2



Charge and Current in an LC
Circuit

e The charge on the 2
capacitor oscillates Q max /\
between Q.. and ' t
Qe ViV

e The currentin the inductor

I I
| I
. ]/ I I
oscillates between I, and 4 }
max /[ ~— — I
'Imax } :
I
e Q and I are 90° out of
phase with each other | U v
I
e Sowhen Q is a maximum, | ' | ' |
0 I 3T 2T

IS zero, etc.



Energy in an LC Circult —
Graphs :
e The energy continually Lz

oscillates between the

energy stored in the I Q

electric and magnetic i 2C

fields : i : 'f
e When the total energy T T

is stored in one field, o

the energy stored in the VARFAY -

other field is zero i i i —

0 T 3T 21 |

©2004 Thomson - Brooks/Cole



Notes About Real LC Circuits |:

e |n actual circuits, there Is always some
resistance

e Therefore, there is some energy transformed
to internal energy

e Radiation is also inevitable In this type of
circuit

e The total energy In the circuit continuously
decreases as a result of these processes




The RLC Circuit e

e A circuit containing a

resistor, an inductor E
and a capacitor Is ;
called an RLC Circuit ;
e Assume the resistor c—— 5 —0)
represents the total
resistance of the circuit §R
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Active Figure 32.15 :
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RLC Circuit, Analysis :

e The total energy Is not constant, since there
IS a transformation to internal energy in the
resistor at the rate of dU/dt =-12R

o Radiation losses are still ignored
e The circuit’'s operation can be expressed as

2
Ld ?+RdQ+Q=O
dt dt




RLC Circuit Compared to T

Damped Oscillators :

e The RLC circuit is analogous to a damped
harmonic oscillator

e When R=0

e The circult reduces to an LC circuit and Is
equivalent to no damping in a mechanical
oscillator



RLC Circuit Compared to T

Damped Oscillators, cont. :

e When R Is small:

e The RLC circuit is analogous to light damping in a
mechanical oscillator

o Q=0Q . et cos wyt

® Wy Is the angular frequency of oscillation for the
circuit and

1 RV
Wy =|——| —
LC 2L




RLC Circuit Compared to T

Damped Oscillators, final :

e When R is very large, the oscillations damp out very
rapidly

e There is a critical value of R above which no
oscillations occur

R.=v4L/C

e If R =R, the circuit is said to be critically damped
e When R > R, the circuit is said to be overdamped



Damped RLC Circuit, Graph

e The maximum value of
Q decreases after each

oscillation
o R RC

e This is analogous to the
amplitude of a damped
spring-mass system

QIT]'AX

Q

T

()



000
. 0000
Summary: Analogies Between
. o000
. . L X
Electrical and Mechanic Systems | ¢
TABLE 32.1
Analogies Between Electrical and Mechanical Systems
One-Dimensional

Electric Circuit Mechanical System
Charge 0 < x Position
Current I & v, Velocity
Potential difference AV & F, Force
Resistance R« b Viscous damping coefficient
Capacitance C— 1/k (k = spring constant)
Inductance L < m Mass
Current = time derivative of . _’{g e dx Velocity = time derivative of

charge dt * il position
RaLe ofcluTngc af f‘un:ctnt - dl _ d 2Q dv,  d*x Acceleration = second time

second time derivative of T “ a,= PR I S

charge t dt dt di ervative of position
Energy in inductor U =3LI? & K=3mo® Kinetic energy of moving object
Energv in capacitor o "

ey capattion Ug = %T — U=3kx? Potential energy stored in a spring
Rate of energy loss due I’R & b? Rate of energy loss due

to resistance to friction

. . d? Q ag 0 d*x dx . .
RLC circuit L— Rt =2 m— b= Damped object on a spring
dt= dt C dt= dt : :

® Thomson Higher Education



