PHYS 2326 University Physics II - Class number -

QUIZ - #3 CHAPTERS: 30,31,32,33,34

JULY 31, 2013

1. The switch in the figure is closed at t = 0 when the current I is zero. When I = 15 mA, what is the potential difference across the inductor?

- **a.** 240 V
- **b.** 60 V
- **c.** 0
- **d.** 180 V
- e. 190 V

- 2. A series LC circuit contains a 100 mH inductor, a 36.0 mF capacitor and a 12 V battery. The angular frequency of the electromagnetic oscillations in the circuit is
 - **a.** $36.0 \times 10^{-4} \text{ rad/s}.$
 - **b.** $6.00 \times 10^{-2} \, \text{rad/s}.$
 - **c.** 2.78 rad/s.
 - **d.** 16.7 rad/s.
 - **e.** 277 rad/s.

- 3. A 0.5-H inductor is connected into a 110 V-rms 60-Hz voltage source, with an ammeter in series. What is the rms value of the current through the inductor?
 - **a.** 0.189 A (rms)
 - **b.** 0.292 A (rms)
 - c. 0.584 A (rms)
 - **d.** 1.19 A (rms)
 - **e.** 0.093 A (rms)
- 4. Find the resonant frequency for a series *RLC* circuit where $R = 10\Omega$, $C = 5 \mu F$, and L = 2 mH.
 - **a.** 998 Hz
 - **b.** 1.592 kHz
 - **c.** 2.45 kHz
 - **d.** 11.3 kHz
 - **e.** 2.53 kHz

5. Determine the rms voltage drop across the capacitor in the circuit.

- **a.** 55 V
- **b.** 77 V
- **c.** 110 V
- **d.** 154 V
- e. 198 V

BONUS: The phase angle between *V* and *I* is

$$V_0 \sin \omega t$$
 $R \geqslant L = C$

$$a. \quad \tan^{-1} \left[\frac{R}{X_C} - \frac{R}{X_L} \right]$$

b.
$$\tan^{-1}\left(\frac{R}{X_C - X_L}\right)$$

$$\mathbf{c.} \quad \tan^{-1}\left(\frac{X_C - X_L}{R}\right)$$

d.
$$\tan^{-1} \frac{R}{\sqrt{R^2 + (X_L - X_C)^2}}$$

e. $\tan^{-1} \sqrt{R^2 + (X_L - X_C)^2}$

e.
$$\tan^{-1} \sqrt{R^2 + (X_L - X_C)^2}$$

BONUS: If the maximum *E*-component of an electromagnetic wave is 600 V/m, what is the maximum *B*-component?

- **a.** 1.4 T
- **b.** $1.8 \times 10^{-5} \text{ T}$
- c. $2.0 \times 10^{-6} \text{ T}$
- **d.** $1.0 \times 10^{-3} \text{ T}$
- **e.** $1.6 \times 10^{-10} \text{ T}$

BONUS: Find the force exerted by reflecting sunlight off a reflecting aluminum sheet in space if the area normal to the sunlight is $10\,000\,\mathrm{m}^2$ and the solar intensity is $1350\,\mathrm{W/m}^2$.

- 0.72 N
- **b.** 0.09 N
- 9 N c.
- 45 N d.
- 0.18 N