PHYS 2326 University Physics II – Class number -49903

9:00 AM - 12:15 PM

QUIZ#1CHAPTERS: 23, 24, 25, 26

JULY 15, 2013

- 1. Each of two small non-conducting spheres is charged positively, the combined charge being $40 \,\mu\text{C}$. When the two spheres are 50 cm apart, each sphere is repelled from the other by a force of magnitude 2.0 N. Determine the magnitude of the smaller of the two charges.
 - **a.** $1.4 \mu C$
 - **b.** 1.1 *μ*C
 - **c.** $2.0 \,\mu\text{C}$
 - **d.** $3.3 \,\mu\text{C}$
 - **e.** $17 \,\mu\text{C}$

ANS=a.

- 2. A uniformly charged rod (length = 2.0 m, charge per unit length = 5.0 nC/m) is bent to form one quadrant of a circle. What is the magnitude of the electric field at the center of the circle?
 - a. 62 N/C
 - **b.** 56 N/C
 - c. 50 N/C
 - **d.** 44 N/C
 - e. 25 N/C

ANS=c.

- 3. A long cylindrical shell (radius = 2.0 cm) has a charge uniformly distributed on its surface. If the magnitude of the electric field at a point 8.0 cm radially outward from the axis of the shell is 85 N/C, how much charge is distributed on a 2.0 -m length of the charged cylindrical surface?
 - **a.** 0.38 nC
 - **b.** 0.76 nC
 - **c.** 0.19 nC
 - **d.** 0.57 nC
 - e. 0.98 nC

ANS=b.

- 4. A particle (m = 2.0 μ g, q = –5.0 nC) has a speed of 30 m/s at point A and moves (with only electric forces acting on it) to point B where its speed is 80 m/s. Determine the electric potential difference $V_{\rm A}$ – $V_{\rm B}$.
 - **a.** -2.2 kV
 - **b.** +1.1 kV
 - **c.** -1.1 kV
 - **d.** +2.2 kV
 - **e.** +1.3 kV

ANS=c.

5. If $C = 10 \,\mu\text{F}$, what is the equivalent capacitance for the combination shown?

- **a.** $7.5 \,\mu\text{F}$
- **b.** $6.5 \,\mu\text{F}$
- **c.** $7.0 \, \mu \text{F}$
- **d.** 5.8 μ F
- **e.** $13 \, \mu \text{F}$

ANS=d.