HOMEWORK - 1 (HINTS). | Chapter-24. | |--| | A solid nonconducting sphere (radius = 12 cm) has a charge of uniform density (30 nC/m³) distributed throughout its volume. Determine the magnitude of the electric field 15 cm from the center of the sphere. | | a. 22 N/C b. 49 N/C c. 31 N/C d. 87 N/C e. 26 N/C | | ========
HINTS: | | ========
Strategy: | | First, calculate the total charge of the sphere: $q = \sigma \times \text{(Volume of the sphere-R=12cm)}$. The field E will be the same if the total charge is concentrated in the center of the sphere. | | Use the Gauss Law: $E \times (Area-of-sphere-radius-R=15 \text{ cm}) = q / \epsilon_0$. | | Finally, solve for E. | 7. Determine the energy stored in C_2 when C_1 = 15 μ F, C_2 = 10 μ F, C_3 = 20 μ F, and V_0 = 18 V. - **a.** 0.72 mJ - **b.** 0.32 mJ - **c.** 0.50 mJ - **d.** 0.18 mJ - **e.** 1.60 mJ ========= HINTS: ======== ## Strategy: Determine the total charge on each plate for two fragments (C_1) and (C_{23} = made of C_2 and C_3 connected in parallel). Determine the total capacitance C_{tot} of C_1 and C_{23} fragments connected in series. The total charge Q can be determined from $C_{tot} = Q/V_0$. Q is the charge on C_1 and $Q = Q_2 + Q_3$ (Q2=charge on C2 and Q3 = charge on C3). We also know that: $V_0 = V_1 + V_{23}$, $(V_{23} = \text{the potential difference across } C_2 \text{ or } C_3)$, $V_1 = \text{the potential difference across } C_1$. Determine V_1 from Q and C_1 , and then V_{23} . Finally, solve for the potential energy stored in C_2 capacitor: $U_2 = 1/2 C_2 V_{23}^2$. | 8. | A 30- μ F capacitor is charged to an unknown potential V_0 and then connected across | |----|--| | | an initially uncharged 10- μ F capacitor. If the final potential difference across the | | | 10 - μ F capacitor is 20 V, determine V_0 . | - **a.** 13 V - **b.** 27 V - **c.** 20 V - **d.** 29 V - **e.** 60 V ======== HINTS: ======== ## **Strategy:** Use the conservation law of the total electric charge. Before the connection (initial-situation): Q(initial) = $$C_1 \times V_0$$, (Here, $C_1 = 30 - \mu F$) After the connection: Q(final) = C_1 \times V $_f$ + C_2 \times V $_f$. (Here, C_1 = 30- μ F , C_2 = 10- μ F , V $_f$ = 20 V) Charges must be preserved: Q(initial) = Q(final). Finally, solve for V_0 .