PHYS 2326 University Physics II –

HOMEWORK- SET #1

CHAPTERS: 23, 24, 25, 26

Ch. 23.===

- 1. A charge (uniform linear density = 9.0 nC/m) is distributed along the *x* axis from $x = 0$ to $x =$ 3.0 m. Determine the magnitude of the electric field at a point on the *x* axis with $x = 4.0$ m.
	- **a.** 81 N/C **b.** 74 N/C **c.** 61 N/C
	- **d.** 88 N/C
	- **e.** 20 N/C

=============== SOLUTION:

===============

- 2. A uniformly charged rod (length = 2.0 m, charge per unit length = 3.0 nC/m) is bent to form a semicircle. What is the magnitude of the electric field at the center of the circle?
	- **a.** 64 N/C
	- **b.** 133 N/C
	- **c.** 48 N/C
	- **d.** 85 N/C
	- **e.** 34 N/C

=============

SOLUTION:

=============

2.
\n**1**
$$
udt = \sqrt{\frac{1}{\frac{0.60 \pm 0.7}{0.60}}}
$$

\n**2** $\frac{1}{\frac{0.60 \pm 0.7}{0.60}} = \sqrt{\frac{1}{100}} = \frac{1}{\frac{0.60 \text{ m/s}}{100}} = \frac{1}{\frac{0.60 \text{ m/s}}{100}} = \frac{1}{\frac{0.60 \text{ m/s}}{100}} = \frac{1}{\frac{0.60 \text{ m/s}}{100}} = \frac{1}{\frac{0.60 \pm 0.7}{0.60}} = \frac{1}{\frac{0.60 \pm 0.7}{0.60}} = \frac{1}{\frac{0.60 \pm 0.7}{0.60}} = \frac{1}{\frac{0.60 \text{ m}}{100}} = \frac{1}{\frac{0.60 \text{ m$

- $Ch. 24 = = = = = =$
- 3. A long nonconducting cylinder (radius = 6.0 mm) has a nonuniform volume charge density given by αr^2 , where $\alpha = 6.2$ mC/m⁵ and *r* is the distance from the axis of the cylinder. What is the magnitude of the electric field at a point 2.0 mm from the axis?
	- **a.** 1.4 N/C
	- **b.** 1.6 N/C
	- **c.** 1.8 N/C
	- **d.** 2.0 N/C
	- **e.** 5.4 N/C

========== SOLUTION:

 $G = d \cdot r^2$ $d = 6.2 \frac{mc}{m^2}$ pe: dq=d.dV $d\rho = (\alpha \cdot r^2, (\alpha \vee$ $l = d\mathbf{c} \cdot 2\pi \mathbf{c}$ $dq = \alpha \cdot r^2 \cdot (dr \cdot 2\pi r \cdot 1)$ total change from $R=0$ to $R=R_1=2m$
 $q_1 = \int dq_1 = \alpha \cdot 2\pi \cdot \int_{\alpha}^{\beta} r^3 dr$ $\frac{p_1 = 2\pi \cdot \alpha \cdot \angle \left(\frac{r^4}{4}\right)}{P_0}$ $47-2\pi \cdot 2 \cdot 2 \cdot \frac{4}{4} = \frac{\pi \cdot 2}{2} \cdot 2 \cdot 1.$ Jours $E = 1.4 \frac{N}{c}$ $\frac{q_1}{\mathcal{E}_0 \cdot A_1}$ $=2\pi R_1(L)$ $\mathcal{A}_{\mathfrak{a}}$ $E = \frac{\pi \cdot a_1 \cdot \dots \cdot a_s}{e_1 \cdot e_2 \cdot \dots \cdot e_s}$

6.2. 10³ = (2. 10³ m)³

4. 8.8542 α . E=

- 4. A solid nonconducting sphere (radius = 12 cm) has a charge of uniform density (30 nC/m^3) distributed throughout its volume. Determine the magnitude of the electric field 15 cm from the center of the sphere.
	- **a.** 22 N/C
	- **b.** 49 N/C
	- **c.** 31 N/C
	- **d.** 87 N/C **e.** 26 N/C
	-

============= SOLUTION: ==========

 R_{z} =12cm R_{z} =15cm S_{pl} Gauss $E \cdot A$ Law: $\overline{\mathcal{E}_{0}\cdot\mathcal{E}}$ Area of Hie sphere $A = 4\pi r^2 = 4\pi R^2$, $R_2 = 15$ cm · Total charge: 9 = G.V 51840 10.16 $\sqrt{\frac{7}{2} \frac{4}{3} \pi \tau^3}$ $f(86, 138)$ $\sqrt{2} = \frac{6}{3}\pi R_1^3$ $E = \frac{\frac{\sqrt{4}}{3}\pi R_1^3 \cdot \frac{1}{6}}{E_0(K\pi R_2^2)} = \frac{R_1^3 \cdot \frac{1}{6}}{3E_0 R_2^2} = \frac{1}{(178)}$
 $(12.10^2 \text{ m})^3 \cdot 30.10^9 \frac{E_0}{m} = \frac{1}{2}$
 $3.8.8542.10^{12} = \frac{e^2}{N_1 m^2} \cdot (15.10^2 \text{ m})^2 = 3.8.8542.225.10^{-16}$ $E =$ $E = 86.738 \frac{x}{c} = 87 \frac{x}{c}$

Ch. 25==

- 5. A particle ($q = +5.0 \mu$ C) is released from rest when it is 2.0 m from a charged particle which is held at rest. After the positively charged particle has moved 1.0 m toward the fixed particle, it has a kinetic energy of 50 mJ. What is the charge on the fixed particle?
	- **a.** $-2.2 \mu C$ **b.** $+6.7 \mu C$ **c.** $-2.7 \mu C$ **d.** $+8.0 \mu C$ **e.** –1.1 *µ*C

================= SOLUTION =============

 $W = E_{kin} = \hbar e \cdot q \cdot q'$ AV Fre Im Ll, $\frac{2I_{1e}.q.q'}{2}$ $\overline{\textbf{x}}$ $rac{1}{z}$ $=\frac{1}{2}$ 2.5 Q ker q 24 50.10 X W 10 : 14 $J=N\cdot n$ $\overline{\mathbb{Q}}$ $= 2.225 X 10$ \overline{C} $=2.225 \cdot MC$

- 6. Two large parallel conducting plates are 8.0 cm apart and carry equal but opposite charges on their facing surfaces. The magnitude of the surface charge density on either of the facing surfaces is 2.0 nC/m^2 . Determine the magnitude of the electric potential difference between the plates.
	- **a.** 36 V
	- **b.** 27 V
	- **c.** 18 V
	- **d.** 45 V
	- **e.** 16 V

======SOL===========

 $6.20 - 6$ $\overline{\mathsf{X}}$ $+$ $E = \frac{N}{c}$
 $V = \frac{N}{c}$
 $V = \frac{N}{c}$ $\Phi_{\epsilon} = E A = \frac{\Phi_{i} \lambda}{\epsilon_{0}}$ $1V = F$ $94 = 6. A$ $E = \frac{q_{in}}{\varepsilon_{o} \cdot A} = \frac{\varepsilon_{o} \cdot A}{\varepsilon_{o} \cdot A}$ $\triangle \sqrt{2\pi}$ $dV = -E \cdot dx$ $\Delta V = -\int E \cdot d\gamma = -E \cdot \int dx$ $\Delta V = -E \cdot d$ $\Delta V = -E \cdot d$
 $\Delta V = -\frac{G}{E_0} \cdot d = \frac{9K}{8.8542.15^{12} \text{ s}} \cdot 8.15^{2} \text{ m}$
 $|\Delta V| = \frac{d}{E_0} \cdot d = \frac{2.0 \cdot 10 \text{ m}^2 \text{ s}}{8.8542.15^{12} \text{ s}} \cdot 8.15^{2} \text{ m}$
 $= 18.0 + \frac{N}{C} \text{ m} = 18.1 \text{ Vall}$

- Ch. 26===
- 7. Determine the energy stored in C_2 when $C_1 = 15 \,\mu\text{F}$, $C_2 = 10 \,\mu\text{F}$, $C_3 = 20 \,\mu\text{F}$, and $V_0 = 18 \,\text{V}$.

========= SOL ===========

 \mathbb{Z} , \mathbb{Z}^n $+Q_3$ i_1 c_2 = i_1 $\frac{7}{125}$ 10.1 V_{∞} \overline{C} $= 20 \cdot 10^{6} f$ $V_0 = 18V$ Potential Energy stored in the (1) $C₂$ $\left(\frac{1}{2} \right)$ = $=$ $\frac{1}{2}$ Q ΔV 7 Δ need? $C = \frac{Q_1}{V_1}$ $V_0 = V_1 + V_{23}$ (3) $C_{23} = \frac{Q_{23}}{V_{23}}$ \sim $\sqrt{2}$ Parallel ; C2 8 czi $C_{23} = C_2 + C_3$ $Q = Q_1 (h)$ $Q_1 = Q_2 + Q_3$ $rac{2}{\sqrt{5}}$ $\overline{c_2}$ $\frac{1}{2}$ ϵ $\frac{C_{23} + C_{1}}{C_{1}C_{23}}$ $Q = c_1 \cdot v_1 =$ \overline{C} $\frac{Q_{1}}{V_{23} = V_{0} - V_{1} = V_{0} - \frac{Q_{1}}{C_{1}}}\frac{Q}{C_{1}}\left(\frac{1}{8}\right)$ $V_1 = \frac{Q}{C_1}$ $C = \frac{e_1 c_2 s_3}{c_{23} + c_1}$ $\left(\begin{matrix} \mathcal{Q} \end{matrix}\right)$

$$
V_{0} = V_{1} + V_{2} = \frac{V_{1} - V_{2} - V_{1}}{V_{1} - V_{2}} = 0.12 - \frac{V_{1} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{V_{2} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{V_{1} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{V_{2} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{V_{1} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{V_{2} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{V_{1} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{V_{1} - V_{2}}{V_{1} - V_{2}} = 0.12 + \frac{1.8 + \frac{1.04}{1.04}}{V_{1} - V_{2}} = 0.
$$

- 8. A 30- μ F capacitor is charged to an unknown potential V_0 and then connected across an initially uncharged 10-*µ*F capacitor. If the final potential difference across the 10-*µ*F capacitor is 20 V*,* determine V_0 .
	- **a.** 13 V
	- **b.** 27 V
	- **c.** 20 V
	- **d.** 29 V
	- **e.** 60 V

========== SOL =======

 $Q_1\not=Q_2$ $= 30r$ $\frac{Q^{2}}{2c_{1}}+\frac{Q^{2}}{2c_{2}}=\frac{1}{2}k_{1}v_{0}^{2}$ $\frac{C_{1}}{\sqrt{6^{4}}20^{1}}$ $+q_{f1} - q_{f1}$ $+Q_{61} - Q_{51}$ $\overline{\vee}_{\circ}$ $1 - q_{\epsilon}$ 4962 intie Fre Charge: $Q+ev:$ $Q_{\zeta_1} = C_1 \cdot V_0 = Q_{\text{fold}}$ $Q_f = Q_{1f} + Q_{2f}$ $Q_f = C_1 \cdot V_f + C_2 \cdot V_f$ $Q_f = Q_c V_f = C_1 \cdot V_o$ $C_1 \cdot V_f + C_2 \cdot V_f = C_1 \cdot V_o$ $f + c_2$ +
 $\Rightarrow V_o = \frac{c_1 + c_2}{c_1} V_f$
 $V_o = 20V \cdot \frac{40.76F}{30.76F} = 26.7 V$
 $= 27V$.