

TRIGONOMETRIC FUNCTIONS: THE UNIT CIRCLE

Copyright © Cengage Learning. All rights reserved.

Consider the unit circle given by

$$x^2 + y^2 = 1$$

Imagine that the real number line is wrapped around this circle, with positive numbers corresponding to a counterclockwise wrapping and negative numbers corresponding to a clockwise wrapping.

Each real number t corresponds to a point (x, y) on the circle.

For example, the real number 0 corresponds to the point (1, 0).

Moreover, because the unit circle has a circumference of 2π , the real number 2π also corresponds to the point (1, 0).

The Trigonometric Functions

sine cosecant cosine secant tangent cotangent

These six functions are normally abbreviated sin, csc, cos, sec, tan, and cot, respectively.

The Trigonometric Functions

Definitions of Trigonometric Functions

Let *t* be a real number and let (x, y) be the point on the unit circle corresponding to *t*.

$$\sin t = y \qquad \cos t = x \qquad \tan t = \frac{y}{x}, \quad x \neq 0$$
$$\csc t = \frac{1}{y}, \quad y \neq 0 \qquad \sec t = \frac{1}{x}, \quad x \neq 0 \qquad \cot t = \frac{x}{y}, \quad y \neq 0$$

45 degree angle

45 – 45 – 90 Triangle

The Trigonometric Functions

The unit circle has been divided into eight equal arcs, corresponding to values of

$$0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}$$
, and 2π .

Figure 1.22

The Trigonometric Functions

The unit circle has been divided into 12 equal arcs, corresponding to *t*-values of

Example 1 – Evaluating Trigonometric Functions

Evaluate the six trigonometric functions at each real number.

a.
$$t = \frac{\pi}{6}$$
 b. $t = \frac{5\pi}{4}$ **c.** $t = \pi$

Solution:

Begin by finding the corresponding point (x, y) on the unit circle. Then use the definitions of trigonometric functions.

a.
$$t = \frac{\pi}{6}$$
 corresponds to the point $(x, y) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

$$\sin\frac{\pi}{6} = y = \frac{1}{2}$$

$$\cos\frac{\pi}{6} = x = \frac{\sqrt{3}}{2}$$

$$\tan\frac{\pi}{6} = \frac{y}{x} = \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\csc\frac{\pi}{6} = \frac{1}{y} = \frac{1}{1/2} = 2$$

$$\sec \frac{\pi}{6} = \frac{1}{x} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$
$$\cot \frac{\pi}{6} = \frac{x}{y} = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}$$

5.
$$t = \frac{5\pi}{4}$$
 corresponds to the point (*x*, *y*) = $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$.

$$\sin\frac{5\pi}{4} = y = -\frac{\sqrt{2}}{2}$$

$$\cos\frac{5\pi}{4} = x = -\frac{\sqrt{2}}{2}$$

$$\tan\frac{5\pi}{4} = \frac{y}{x} = \frac{-\sqrt{2}/2}{-\sqrt{2}/2} = 1$$

$$\csc\frac{5\pi}{4} = \frac{1}{y} = -\frac{2}{\sqrt{2}} = -\sqrt{2}$$

$$\sec \frac{5\pi}{4} = \frac{1}{x} = -\frac{2}{\sqrt{2}} = -\sqrt{2}$$
$$\cot \frac{5\pi}{4} = \frac{x}{y} = \frac{-\sqrt{2}/2}{-\sqrt{2}/2} = 1$$

cont'd

c. $t = \pi$ corresponds to the point (x, y) = (-1, 0).

$$\sin \pi = y = 0$$

 $\cos \pi = x = -1$

$$\tan \pi = \frac{y}{x} = \frac{0}{-1} = 0$$

$$\csc \pi = \frac{1}{y} \text{ is undefined.}$$
$$\sec \pi = \frac{1}{x} = \frac{1}{-1} = -1$$
$$\cot \pi = \frac{x}{y} \text{ is undefined.}$$

The *domain* of the sine and cosine functions is the set of all real numbers. To determine the *range* of these two functions, consider the unit circle.

We associate sin t with y and cost t with x.

Adding 2π to each value of *t* in the interval [0, 2π] completes a second revolution around the unit circle.

$$sin(t + 2n\pi) = sin t$$

and

$$\cos(t + 2n\pi) = \cos t$$

for any integer *n* and real number *t*. Functions that behave in such a repetitive (or cyclic) manner are called **periodic**.

Recall that a function *f* is *even* if f(-t) = f(t), and is *odd* if f(-t) = -f(t).

Even and Odd Trigonometric Functions The cosine and secant functions are *even*. $\cos(-t) = \cos t$ $\sec(-t) = \sec t$ The sine, cosecant, tangent, and cotangent functions are *odd*. $\sin(-t) = -\sin t$ $\csc(-t) = -\csc t$ $\tan(-t) = -\tan t$ $\cot(-t) = -\cot t$ Example 3 – Using the Period to Evaluate the Sine and Cosine

a. Because
$$\frac{13\pi}{6} = 2\pi + \frac{\pi}{6}$$
,
 $\sin \frac{13\pi}{6} = \sin \left(2\pi + \frac{\pi}{6} \right)$
 $= \sin \frac{\pi}{6} = -\frac{1}{2}$

b. Because
$$-\frac{7\pi}{2} = -4\pi + \frac{\pi}{2}$$
, you have
 $\cos\left(-\frac{7\pi}{2}\right) = \cos\left(-4\pi + \frac{\pi}{2}\right)$
 $= \cos\frac{\pi}{2} = 0.$

Example 3 – Using the Period to Evaluate the Sine and Cosine cont'd

c. If
$$\sin t = \frac{4}{5}$$
, what is $sin(-t)$?
Since the sine function is odd we get
 $sin(-t) = -\frac{4}{5}$

Evaluating Trigonometric Functions with a Calculator

When evaluating a trigonometric function with a calculator, you need to set the calculator to the desired *mode* of measurement (*degree* or *radian*).

Most calculators do not have keys for the cosecant, secant, and cotangent functions. To evaluate these functions, you can use the x^{-1} key with their respective reciprocal functions sine, cosine, and tangent.

Evaluating Trigonometric Functions with a Calculator

For instance, to evaluate $\csc(\pi/8)$, use the fact that

$$\csc\frac{\pi}{8} = \frac{1}{\sin(\pi/8)}$$

and enter the following keystroke sequence in *radian* mode.

() SIN ()
$$\pi \div 8$$
 () () x^{-1} (ENTER) Display 2.6131259

Example 4 – Using a Calculator

Function	Mode	Calculator Keystrokes	Display
a. $\sin \frac{2\pi}{3}$	Radian	SIN (2 π \div 3) ENTER	0.8660254
b. cot 1.5	Radian	() TAN () 1.5 () () (x^{-1}) (ENTER)	0.0709148