RIGHT TRIANGLE TRIGONOMETRY

Consider a right triangle, with one acute angle labeled θ.

The Six Trigonometric Functions

The three sides of the triangle are the hypotenuse, the opposite side, and the adjacent side.

We can form six ratios = the six trigonometric functions.
sine cosecant cosine secant tangent cotangent

The Six Trigonometric Functions

$\sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}$
$\csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\sec \theta=\frac{\text { hyp }}{\text { adj }}$
$\cot \theta=\frac{\text { adj }}{\text { opp }}$
opp $=$ the length of the side opposite θ
$\operatorname{adj}=$ the length of the side adjacent to θ
hyp $=$ the length of the hypotenuse

Find the values of the six trigonometric functions of θ.

By the Pythagorean Theorem, $(\text { hyp })^{2}=(o p p)^{2}+(a d j)^{2}$, it follows that

$$
\begin{aligned}
\text { hyp } & =\sqrt{4^{2}+3^{2}} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

Fxample 1 - Solution

So, the six trigonometric functions of θ are

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{4}{5} & \csc \theta=\frac{\text { hyp }}{\text { opp }}=\frac{5}{4} \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{3}{5} & \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{5}{3} \\
\tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{4}{3} & \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{3}{4}
\end{array}
$$

Inthe Six Trigonometric Functions

Sines, Cosines, and Tangents of Special Angles

$\sin 30^{\circ}=\sin \frac{\pi}{6}=\frac{1}{2}$
$\cos 30^{\circ}=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
$\tan 30^{\circ}=\tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}$
$\sin 45^{\circ}=\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
$\cos 45^{\circ}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
$\tan 45^{\circ}=\tan \frac{\pi}{4}=1$
$\sin 60^{\circ}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
$\cos 60^{\circ}=\cos \frac{\pi}{3}=\frac{1}{2}$
$\tan 60^{\circ}=\tan \frac{\pi}{3}=\sqrt{3}$

Thigonometric Identities

Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Pythagorean Identities

$$
\begin{array}{ll}
\sin ^{2} \theta+\cos ^{2} \theta=1 & 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{array}
$$

Note that $\sin ^{2} \theta$ represents $(\sin \theta)^{2}, \cos ^{2} \theta$ represents $(\cos \theta)^{2}$, and so on.

:

Let θ be an acute angle such that $\sin \theta=0.6$. Find the values of (a) $\cos \theta$ and (b) tan θ using trigonometric identities.
a. Use the Pythagorean identity $\sin ^{2} \theta+\cos ^{2} \theta=1$.

$$
\begin{aligned}
(0.6)^{2}+ & \cos ^{2} \theta=1 \\
\cos ^{2} \theta & =1-(0.6)^{2} \\
& =0.64 \\
\cos \theta & =\sqrt{0.64} \\
& =0.8
\end{aligned}
$$

Substitute 0.6 for $\sin \theta$.

Subtract (0.6) ${ }^{2}$ from each side.

Extract the positive square root.
b. Knowing the sine and cosine of θ, we can find the tangent of θ to be

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{0.6}{0.8}=0.75 .
$$

Fvaluating Trigonometric Functions with a Calculator

To use a calculator to evaluate trigonometric functions of angles measured in degrees, first set the calculator to degree mode and then proceed.

For instance, you can find values of $\cos 28^{\circ}$ and $\sec 28^{\circ}$ as follows.

Function	Mode	Calculator Keystrokes	Display
a. $\cos 28^{\circ}$	Degree	$\cos 28$ ENTER	0.8829476
b. $\sec 28^{\circ}$	Degree	$\square \cos (1) 28(1)(\mathbb{C - 1} \mathbb{E N T E R}$	1.1325701

Throughout this text, angles are assumed to be measured in radians unless noted otherwise.

For example, $\sin 1$ means the sine of 1 radian and $\sin 1^{\circ}$ means the sine of 1 degree.

Applications Involving Right Triangles

Applications Involving Right Triangles

Many applications of trigonometry involve a process called solving right triangles.

You are asked to find a missing side or angle from a right triangle.

The angle of elevation represents the anale from the horizontal upward to an object.

For objects that lie below the horizontal, it is common to use the term angle of depression

Example 7 - Using Trigonometry to Solve a Right Triangle
A surveyor is standing 115 feet from the base of the Washington Monument. The surveyor measures the angle of elevation to the top of the monument as 78.3°. How tall is the Washington Monument?

Mxample 7 - Solution

$$
\tan 78.3^{\circ}=\frac{\mathrm{opp}}{\operatorname{adj}}=\frac{y}{x}
$$

where $x=115$ and y is the height of the monument.

Solving for y, the height of the monument, we get

$$
\begin{aligned}
y & =x \tan 78.3^{\circ} \\
& \approx 115(4.82882)
\end{aligned}
$$

≈ 555 feet.

