## Course Syllabus

Plane Trigonometry
MATH 1316
Semester with Spring 2011 Math 1316=0004 (64268) Course Reference Number (CRN)

Instructor contact Mary Jane Ferguson mary.ferguson@hccs.edu 713-718-6441 information (phone number and email
address)
Office Location 310 JDB 3:00-5:30 PM MW and Hours

Course
302 JDB 5:30-7:00 PM MW
Location/Times
Course Semester Credit Hours 3.00
Credit Hours
(SCH) (lecture, lab) If applicable

Total Course 48
Contact Hours
Continuing

## Education Units

(CEU): if
applicable
Course Length 18
(number of
weeks)

Type of
Lecture
Instruction

| Course | Topics include solutions of triangles, Euler identity, graphing of trigonometric and <br> inverse trigonometric functions, identities, trigonometric equations, applications <br> Description: |
| :--- | :--- |
| including DeMoivre's Theorem, and an introduction to vector analysis. |  |

## Course Prerequisite(s)

Academic<br>Discipline/CTE<br>Program Learning<br>Outcomes

Course Student
Learning
Outcomes (SLO): 4 to 7

Learning
Objectives
(Numbering system should be linked to SLO -
e.g., 1.1, 1.2, 1.3, etc.)

SCANS and/or
Core Curriculum
Competencies: If
applicable

Instructional
Methods
Student
Assignments

1. Examine and interpret the graphs of basic trigonometric functions, vectors, and polar plots, and their transformations.
2. Apply standard trigonometric identities to simplify expressions and to solve trigonometric equations and applications.
3. Determine the exact value and approximation of basic trigonometric functions. 4. Rewrite complex numbers in polar form and apply arithmetic operations using both polar and standard forms of complex numbers.

Examine and interpret the graphs of basic trigonometric functions, vectors, and polar plots, and their transformations.
Apply standard trigonometric identities to simplify expressions and to solve trigonometric equations and applications.
Determine the exact value and approximation of basic trigonometric functions.
Rewrite complex numbers in polar form and apply arithmetic operations using both polar and standard forms of complex numbers.

## SCANS

Examine and interpret the graphs of basic trigonometric functions, vectors, and polar plots, and their transformations.
Apply standard trigonometric identities to simplify expressions and to solve trigonometric equations and applications.
Determine the exact value and approximation of basic trigonometric functions.
Rewrite complex numbers in polar form and apply arithmetic operations using both polar and standard forms of complex numbers.

Lecture, question and answer, textbook exercises, supplementary non-textbook exercises, group work

Examine and interpret the graphs of basic trigonometric functions, vectors, and polar plots, and their transformations.
No assignments selected for this outcome
Apply standard trigonometric identities to simplify expressions and to solve trigonometric equations and applications.
No assignments selected for this outcome
Determine the exact value and approximation of basic trigonometric functions.
No assignments selected for this outcome
Rewrite complex numbers in polar form and apply arithmetic operations using both polar and standard forms of complex numbers.

No assignments selected for this outcome

| Student | Examine and interpret the graphs of basic trigonometric functions, vectors, <br> Assessment(s) <br> and polar plots, and their transformations. <br> No assessments selected for this outcome <br> Apply standard trigonometric identities to simplify expressions and to <br> solve trigonometric equations and applications. <br> No assessments selected for this outcome <br> Determine the exact value and approximation of basic trigonometric <br> functions. <br> No assessments selected for this outcome <br> Rewrite complex numbers in polar form and apply arithmetic operations <br> using both polar and standard forms of complex numbers. <br> No assessments selected for this outcome |
| :--- | :--- |
|  | No cell phones in class. |
| Instructor's |  |
| Requirements | Scientific non-graphing calculator |
|  | Un In Class Tests <br> Unannounced Quizzes <br> Comprehensive Final Exam |
|  | The penalty for cheating is an $F$ in the course |

Program/Disciplin 1. Each instructor must cover all course topics by the end of the semester. e Requirements: If The final exam is comprehensive and questions on it can deal with any of the applicable

HCC Grading Scale

| $A=100-90$ | 4 points per semester hour |
| :--- | :--- |
| $B=89-80:$ | 3 points per semester hour |
| $C=79-70:$ | 2 points per semester hour |
| $D=69-60:$ | 1 point per semester hour |
| 59 and below $=F$ | 0 points per semester hour |
| IP (In Progress) | 0 points per semester hour |
| W(Withdrawn) | 0 points per semester hour |
| I (Incomplete) | 0 points per semester hour |
| AUD (Audit) | 0 points per semester hour |

IP (In Progress) is given only in certain developmental courses. The student must re-enroll to receive credit. COM (Completed) is given in non-credit and continuing education courses. To compute grade point average (GPA), divide the total grade
points by the total number of semester hours attempted. The grades "IP," "COM" and "I" do not affect GPA.

See "Health Science Program/Discipline Requirements" for grading scale.

## Instructor Grading Criteria

Four in Class Tests count 100 points each
Quizzes count as bonus credit only and the number varies with the progress of the class
Final Exam counts 100 points
The lowest of the test grades is dropped at the end of the semester
The grade on the final exam will also count as the grade on one missed test.
Instructional
Dugopolski, Mark, Trigonometry, Addison-Wesley, Second Edition, 2007.
Materials
HCC Policy Statement:
Access Student http://hccs.edu/student-rights
Services Policies
on their Web site:
Distance Education and/or Continuing Education Policies
Access DE http://de.hccs.edu/Distance Ed/DE Home/faculty resources/PDFs/DE Syllabus.
Policies on their pdf
Web site:
Access CE http://hccs.edu/CE-student-guidelines
Policies on their Web site:

