

16 Neural Integration II: The Autonomic Nervous System and Higher-Order Functions

PowerPoint[®] Lecture Presentations prepared by Jason LaPres Lone Star College—North Harris

Figure 16-1 An Overview of Neural Integration

© 2012 Pearson Education, Inc.

16-1 Autonomic Nervous System

- Organization of the ANS
 - Integrative centers
 - For autonomic activity in hypothalamus
 - Neurons comparable to upper motor neurons in SNS

16-1 Autonomic Nervous System

- Organization of the ANS
 - Visceral motor neurons
 - In brain stem and spinal cord, are known as preganglionic neurons
 - Preganglionic fibers
 - Axons of preganglionic neurons
 - Leave CNS and synapse on ganglionic neurons

16-1 Autonomic Nervous System

- Visceral Motor Neurons
 - Autonomic ganglia
 - Contain many ganglionic neurons
 - Ganglionic neurons innervate visceral effectors
 - Such as cardiac muscle, smooth muscle, glands, and adipose tissue
 - Postganglionic fibers
 - Axons of ganglionic neurons

Figure 16-2a The Organization of the Somatic and Autonomic Nervous Systems

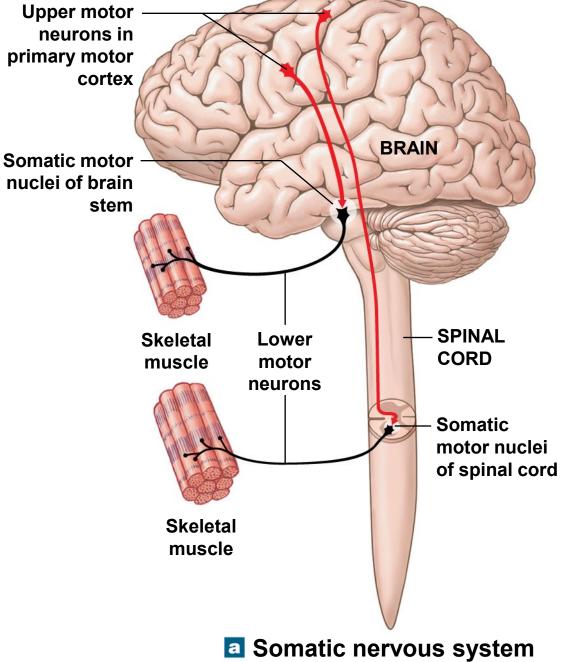
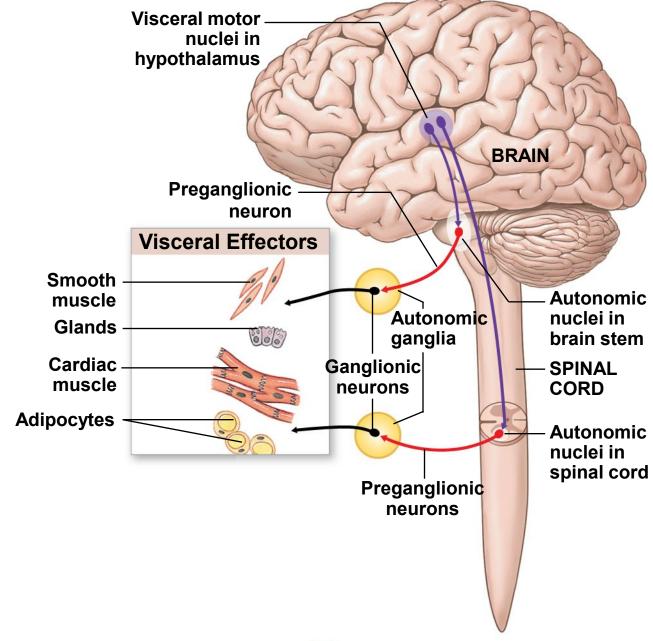



Figure 16-2b The Organization of the Somatic and Autonomic Nervous Systems

Autonomic nervous system

- The Autonomic Nervous System
 - Operates largely outside our awareness
 - Has two divisions
 - **1.** Sympathetic division
 - Increases alertness, metabolic rate, and muscular abilities

2. Parasympathetic division

• Reduces metabolic rate and promotes digestion

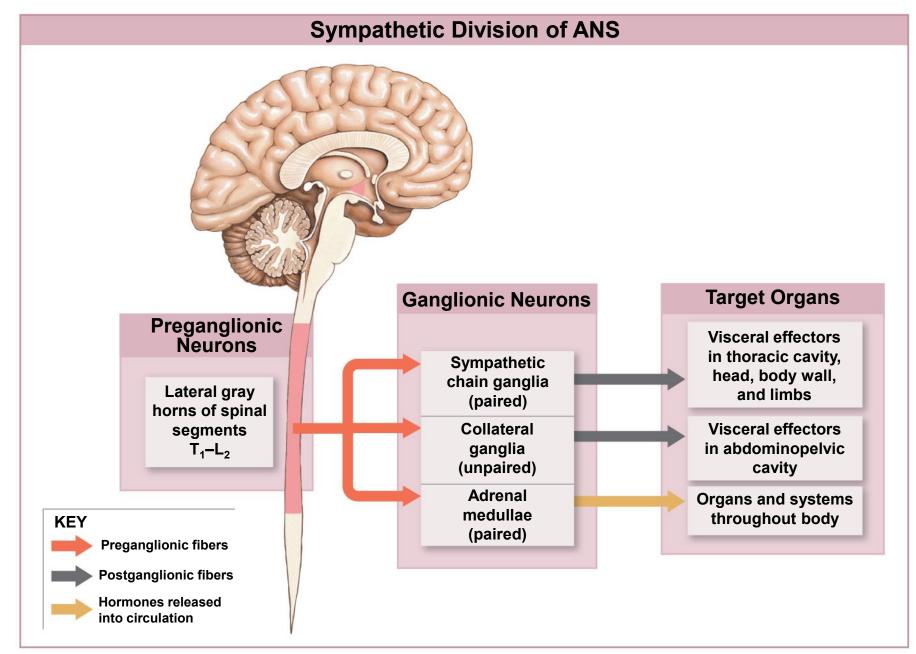
- Sympathetic Division
 - "Kicks in" only during exertion, stress, or emergency
 - "Fight or flight"

Parasympathetic Division

- Controls during resting conditions
- "Rest and digest"

- Sympathetic and Parasympathetic Division
 - 1. Most often, these two divisions have opposing effects
 - If the sympathetic division causes excitation, the parasympathetic causes inhibition
 - 2. The two divisions may also work independently
 - Only one division innervates some structures

- Sympathetic Division
 - Preganglionic fibers (thoracic and superior lumbar; thoracolumbar) synapse in ganglia near spinal cord
 - Preganglionic fibers are short
 - Postganglionic fibers are long

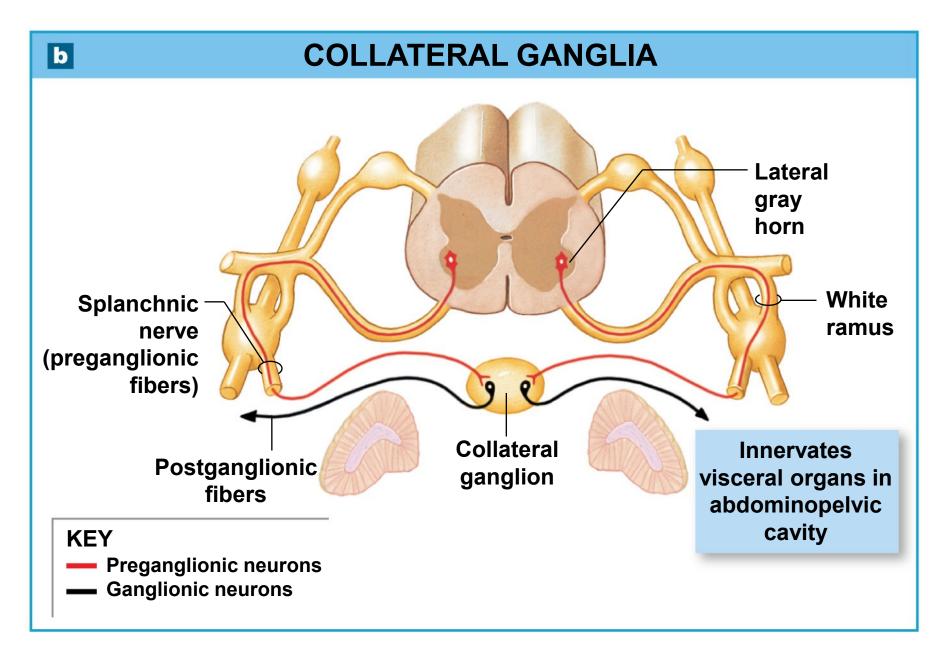

- Seven Responses to Increased Sympathetic Activity
 - 1. Heightened mental alertness
 - 2. Increased metabolic rate
 - 3. Reduced digestive and urinary functions
 - 4. Energy reserves activated
 - 5. Increased respiratory rate and respiratory passageways dilate
 - 6. Increased heart rate and blood pressure
 - 7. Sweat glands activated

- Parasympathetic Division
 - Preganglionic fibers originate in brain stem and sacral segments of spinal cord; craniosacral
 - Synapse in ganglia close to (or within) target organs
 - Preganglionic fibers are long
 - Postganglionic fibers are short
 - Parasympathetic division stimulates visceral activity
 - Conserves energy and promotes sedentary activities

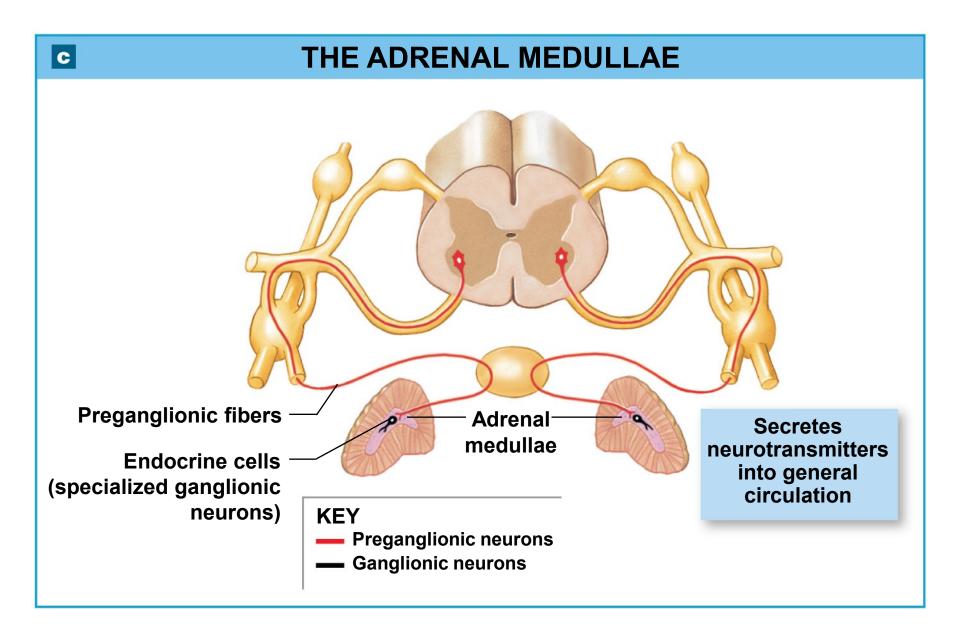
- Five Responses to Increased Parasympathetic Activity
 - 1. Decreased metabolic rate
 - 2. Decreased heart rate and blood pressure
 - 3. Increased secretion by salivary and digestive glands
 - 4. Increased motility and blood flow in digestive tract
 - 5. Urination and defecation stimulation

- The Sympathetic Division
 - Preganglionic neurons located between segments T₁ and L₂ of spinal cord
 - Ganglionic neurons in ganglia near vertebral column
 - Cell bodies of preganglionic neurons in lateral gray horns

Figure 16-3 The Organization of the Sympathetic Division of the ANS



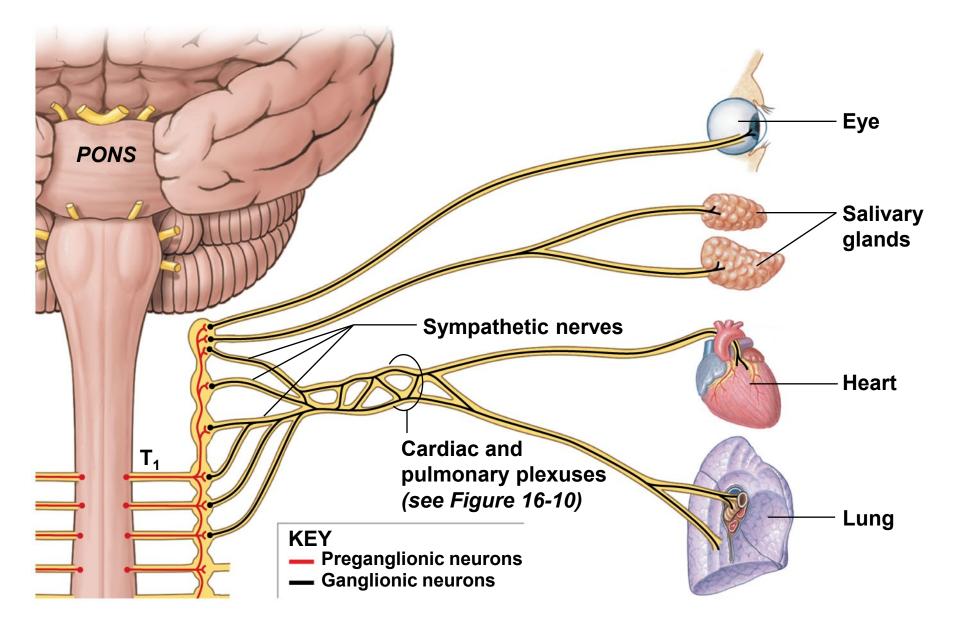
- Ganglionic Neurons
 - Occur in three locations
 - 1. Sympathetic chain ganglia
 - 2. Collateral ganglia
 - 3. Suprarenal medullae


- Sympathetic Chain Ganglia
 - Are on both sides of vertebral column
 - Control effectors:
 - In body wall
 - Inside thoracic cavity
 - In head
 - In limbs

- Collateral Ganglia
 - Are anterior to vertebral bodies
 - Contain ganglionic neurons that innervate tissues and organs in abdominopelvic cavity

- Adrenal Medullae (Suprarenal Medullae)
 - Very short axons
 - When stimulated, release neurotransmitters into bloodstream (not at synapse)
 - Function as hormones to affect target cells throughout body

- Sympathetic Chain Ganglia
 - Postganglionic fibers control visceral effectors
 - In body wall, head, neck, or limbs
 - Enter gray ramus
 - Return to spinal nerve for distribution
 - Postganglionic fibers innervate effectors
 - Sweat glands of skin
 - Smooth muscles in superficial blood vessels


- Sympathetic Chain Ganglia
 - Postganglionic fibers innervating structures in thoracic cavity form bundles
 - Sympathetic nerves

- Sympathetic Chain Ganglia
 - Each sympathetic chain ganglia contains:
 - 3 cervical ganglia
 - 10–12 thoracic ganglia
 - 4–5 lumbar ganglia
 - 4–5 sacral ganglia
 - 1 coccygeal ganglion

- Sympathetic Chain Ganglia
 - Preganglionic neurons
 - Limited to spinal cord segments T₁–L₂
 - White rami (myelinated preganglionic fibers)
 - Innervate neurons in:
 - Cervical, inferior lumbar, and sacral sympathetic chain ganglia

- Sympathetic Chain Ganglia
 - Chain ganglia provide postganglionic fibers
 - Through gray rami (unmyelinated postganglionic fibers)
 - To cervical, lumbar, and sacral spinal nerves

- Sympathetic Chain Ganglia
 - Only spinal nerves T₁–L₂ have white rami
 - Every spinal nerve has gray ramus
 - That carries sympathetic postganglionic fibers for distribution in body wall

Collateral Ganglia

- Receive sympathetic innervation via sympathetic preganglionic fibers
- Splanchnic nerves
 - Formed by preganglionic fibers that innervate collateral ganglia
 - In dorsal wall of abdominal cavity

- Collateral Ganglia
 - Postganglionic fibers
 - Leave collateral ganglia
 - Extend throughout abdominopelvic cavity
 - Innervate variety of visceral tissues and organs

Figure 16-5 The Distribution of Sympathetic Innervation

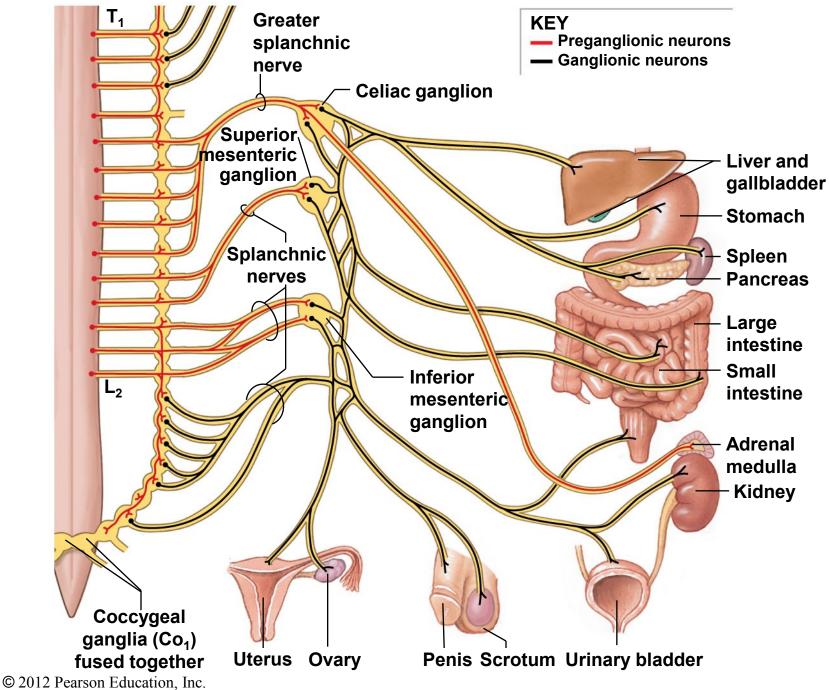
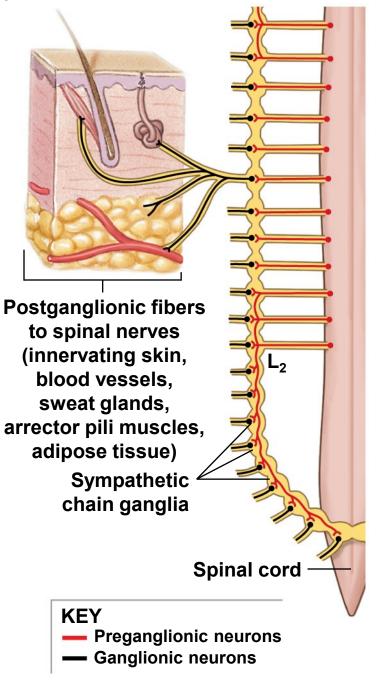



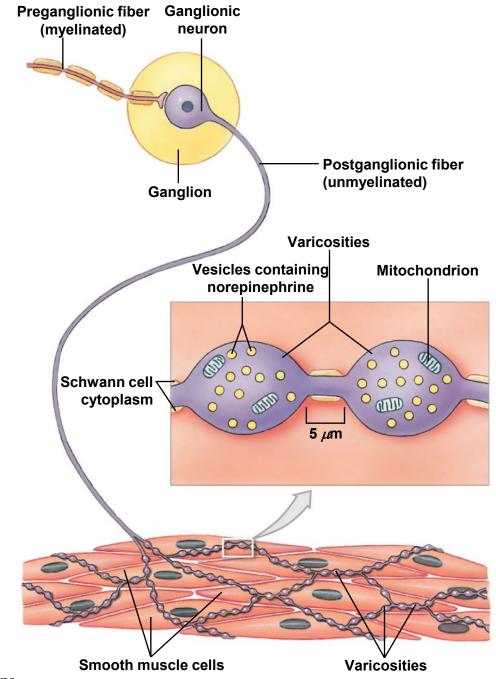
Figure 16-5 The Distribution of Sympathetic Innervation

- Adrenal Medullae
 - Preganglionic fibers entering adrenal gland proceed to center (adrenal medulla)
 - Modified sympathetic ganglion
 - Preganglionic fibers synapse on *neuroendocrine cells*
 - Specialized neurons secrete hormones into bloodstream

- Adrenal Medullae
 - Neuroendocrine cells
 - Secrete neurotransmitters *epinephrine* (E) and norepinephrine (NE)
 - Epinephrine
 - Also called adrenaline
 - Is 75–80% of secretory output
 - Remaining is norepinephrine (NE)
 - Noradrenaline

- Adrenal Medullae
 - Bloodstream carries neurotransmitters through body
 - Causing changes in metabolic activities of different cells including cells not innervated by sympathetic postganglionic fibers
 - Effects last longer
 - Hormones continue to diffuse out of bloodstream

- Sympathetic Activation
 - Change activities of tissues and organs by:
 - Releasing NE at peripheral synapses
 - Target specific effectors, smooth muscle fibers in blood vessels of skin
 - Are activated in reflexes


- Sympathetic Activation
 - Changes activities of tissues and organs by:
 - Distributing E and NE throughout body in bloodstream
 - Entire division responds (sympathetic activation)
 - Are controlled by sympathetic centers in hypothalamus
 - Effects are not limited to peripheral tissues
 - Alters CNS activity

- Changes Caused by Sympathetic Activation
 - Increased alertness
 - Feelings of energy and euphoria
 - Change in breathing
 - Elevation in muscle tone
 - Mobilization of energy reserves

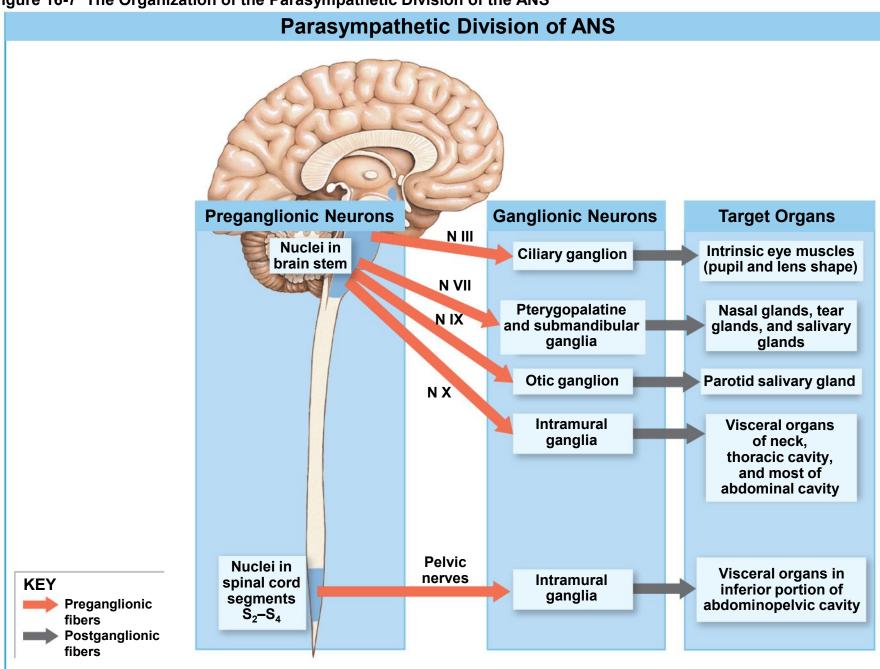
16-3 Various Sympathetic Neurotransmitters

- Stimulation of Sympathetic Preganglionic
 Neurons
 - Releases ACh at synapses with ganglionic neurons
 - Excitatory effect on ganglionic neurons
- Ganglionic Neurons
 - Release neurotransmitters at specific target organs

16-3 Various Sympathetic Neurotransmitters

- Ganglionic Neurons
 - Axon terminals
 - Release NE at most varicosities
 - Called *adrenergic* neuron
 - Some ganglionic neurons release ACh instead
 - Are located in body wall, skin, brain, and skeletal muscles
 - Called *cholinergic* neurons

16-3 Various Sympathetic Neurotransmitters


- Sympathetic Stimulation and the Release of ACh
 - Cholinergic (ACh) sympathetic terminals
 - Innervate sweat glands of skin and blood vessels of skeletal muscles and brain
 - Stimulate sweat gland secretion and dilate blood vessels

- Autonomic Nuclei
 - Are contained in the mesencephalon, pons, and medulla oblongata
 - Associated with cranial nerves III, VII, IX, X
 - In lateral gray horns of spinal segments S₂–S₄

- Ganglionic Neurons in Peripheral Ganglia
 - Terminal ganglion
 - Near target organ
 - Usually paired
 - Intramural ganglion
 - Embedded in tissues of target organ
 - Interconnected masses
 - Clusters of ganglion cells

- Organization and Anatomy of the Parasympathetic Division
 - Parasympathetic preganglionic fibers leave brain as components of cranial nerves
 - III (oculomotor)
 - VII (facial)
 - IX (glossopharyngeal)
 - X (vagus)
 - Parasympathetic preganglionic fibers leave spinal cord at sacral level

© 2012 Pearson Education, Inc.

- Oculomotor, Facial, and Glossopharyngeal Nerves
 - Control visceral structures in head

- Vagus Nerve
 - Provides preganglionic parasympathetic innervation to structures in:
 - Neck
 - Thoracic and abdominopelvic cavity as distant as a distal portion of large intestine
 - Provides 75% of all parasympathetic outflow

- Sacral Segments of Spinal Cord
 - Preganglionic fibers carry sacral parasympathetic output
 - Pelvic nerves innervate intramural ganglia in walls of kidneys, urinary bladder, portions of large intestine, and the sex organs

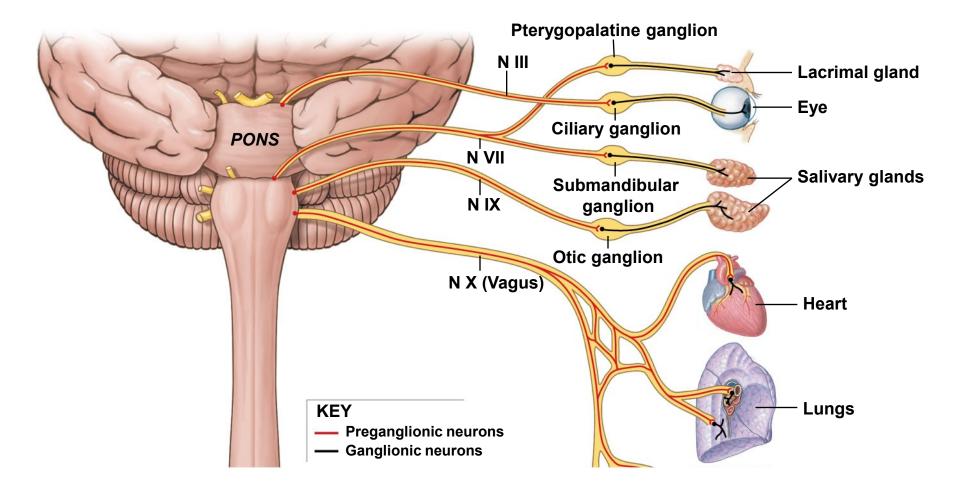
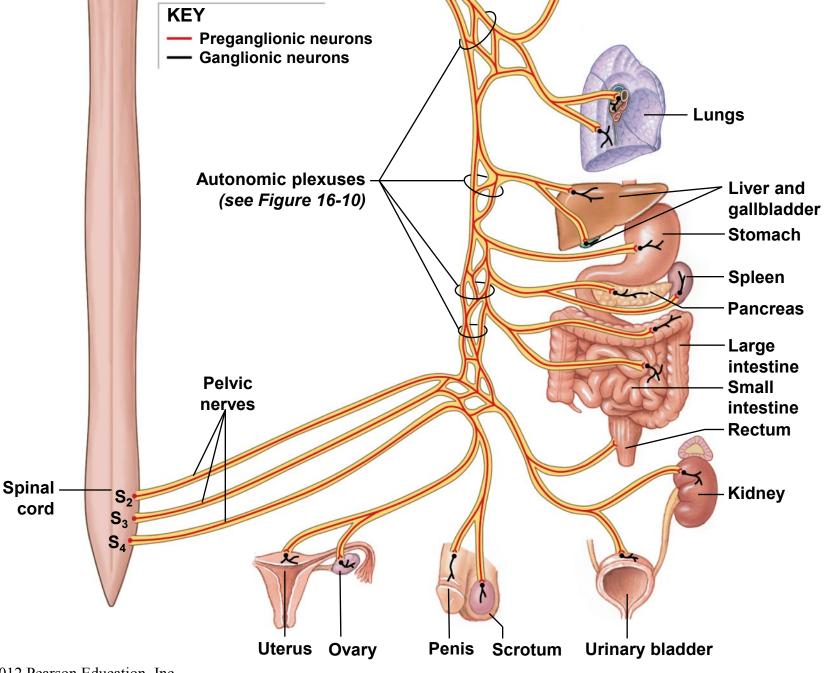
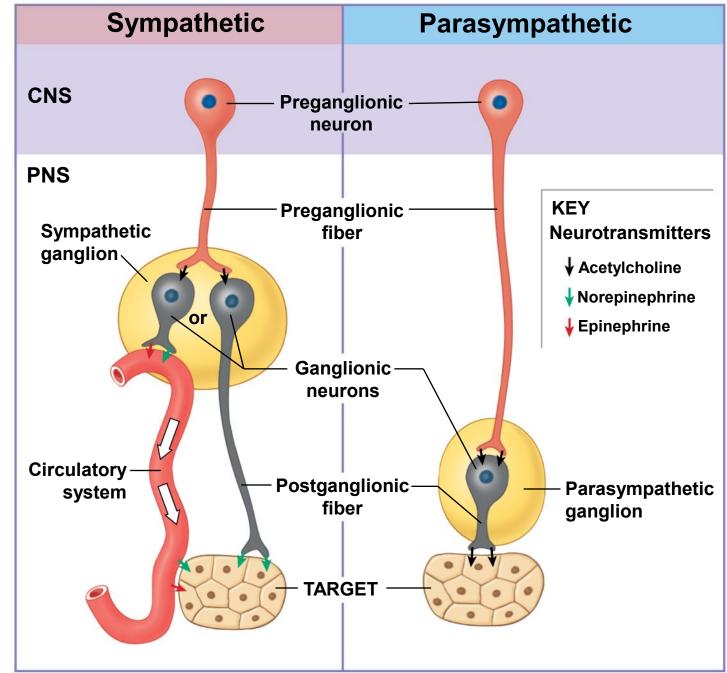



Figure 16-8 The Distribution of Parasympathetic Innervation

- Parasympathetic Activation
 - Centers on relaxation, food processing, and energy absorption
 - Localized effects, last a few seconds at most

- Major Effects of Parasympathetic Division
 - Constriction of the pupils
 - (To restrict the amount of light that enters the eyes)
 - And focusing of the lenses of the eyes on nearby objects
 - Secretion by digestive glands
 - Including salivary glands, gastric glands, duodenal glands, intestinal glands, the pancreas (exocrine and endocrine), and the liver

- Major Effects of Parasympathetic Division
 - Secretion of hormones
 - That promote the absorption and utilization of nutrients by peripheral cells
 - Changes in blood flow and glandular activity
 - Associated with sexual arousal
 - Increase in smooth muscle activity
 - Along the digestive tract


- Major Effects of Parasympathetic Division
 - Stimulation and coordination of defecation
 - Contraction of the urinary bladder during urination
 - Constriction of the respiratory passageways
 - Reduction in heart rate and in the force of contraction

16-5 Parasympathetic Neurons Release ACh

- Neuromuscular and Neuroglandular Junctions
 - All release ACh as neurotransmitter

- Sympathetic Division
 - Widespread impact
 - Reaches organs and tissues throughout body
- Parasympathetic Division
 - Innervates only specific visceral structures
- Sympathetic and Parasympathetic Division
 - Most vital organs receive instructions from both sympathetic and parasympathetic divisions
 - Two divisions commonly have opposing effects

- Anatomy of Dual Innervation
 - Autonomic plexuses
 - Nerve networks in the thoracic and abdominopelvic cavities
 - Are formed by mingled sympathetic postganglionic fibers and parasympathetic preganglionic fibers
 - Travel with blood and lymphatic vessels that supply visceral organs

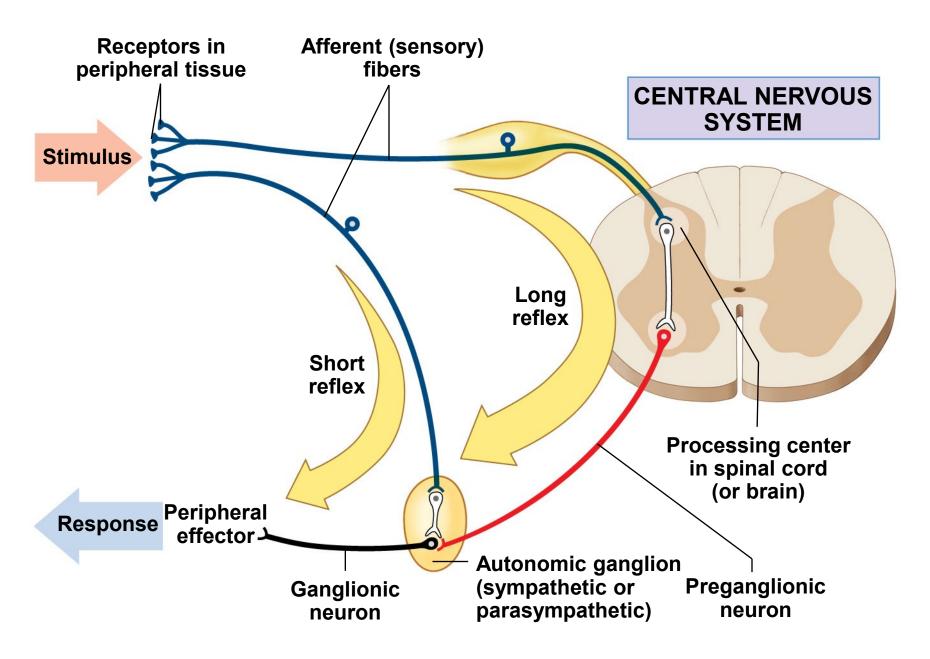
- Autonomic Tone
 - Is an important aspect of ANS function
 - If nerve is inactive under normal conditions, can only increase activity
 - If nerve maintains background level of activity, can increase or decrease activity

- The Heart Receives Dual Innervation
 - Two divisions have opposing effects on heart function
 - 1. Parasympathetic division
 - Acetylcholine released by postganglionic fibers slows heart rate
 - 2. Sympathetic division
 - NE released by varicosities accelerates heart rate
 - Balance between two divisions
 - Autonomic tone is present
 - Releases small amounts of both neurotransmitters continuously

- The Heart Receives Dual Innervation
 - Parasympathetic innervation dominates under resting conditions
 - Crisis accelerates heart rate by:
 - Stimulation of sympathetic innervation
 - Inhibition of parasympathetic innervation

- Autonomic Tone
 - Blood vessel dilates and blood flow increases
 - Blood vessel constricts and blood flow is reduced
 - Sympathetic postganglionic fibers release NE
 - Innervate smooth muscle cells in walls of peripheral vessels

- Autonomic Tone
 - Background sympathetic tone keeps muscles partially contracted
 - To increase blood flow:
 - Rate of NE release decreases
 - Vessels dilate and blood flow increases


- Somatic Motor Control
 - Centers in all portions of CNS
 - Lowest level regulatory control
 - Lower motor neurons of cranial and spinal visceral reflex arcs
 - Highest level
 - Pyramidal motor neurons of primary motor cortex
 - Operating with feedback from cerebellum and basal nuclei

Visceral Reflexes

- Provide automatic motor responses
- Can be modified, facilitated, or inhibited by higher centers, especially hypothalamus
- Visceral reflex arc
 - Receptor
 - Sensory neuron
 - Processing center (one or more interneurons)
 - All polysynaptic
 - Two visceral motor neurons

- Visceral Reflexes
 - Long reflexes
 - Autonomic equivalents of polysynaptic reflexes
 - Visceral sensory neurons deliver information to CNS along dorsal roots of spinal nerves
 - Within sensory branches of cranial nerves
 - Within autonomic nerves that innervate visceral effectors
 - ANS carries motor commands to visceral effectors
 - Coordinate activities of entire organ

- Visceral Reflexes
 - Short reflexes
 - Bypass CNS
 - Involve sensory neurons and interneurons located within autonomic ganglia
 - Interneurons synapse on ganglionic neurons
 - Motor commands distributed by postganglionic fibers
 - Control simple motor responses with localized effects
 - One small part of target organ

- Visceral Reflexes
 - Regulating visceral activity
 - Most organs
 - Long reflexes most important
 - Digestive tract
 - Short reflexes provide most control and coordination

16-7 Visceral Reflexes Regulate the ANS

- Visceral Reflexes
 - Enteric nervous system
 - Ganglia in the walls of digestive tract contain cell bodies of:

- Axons form extensive nerve nets
- Control digestive functions independent of CNS

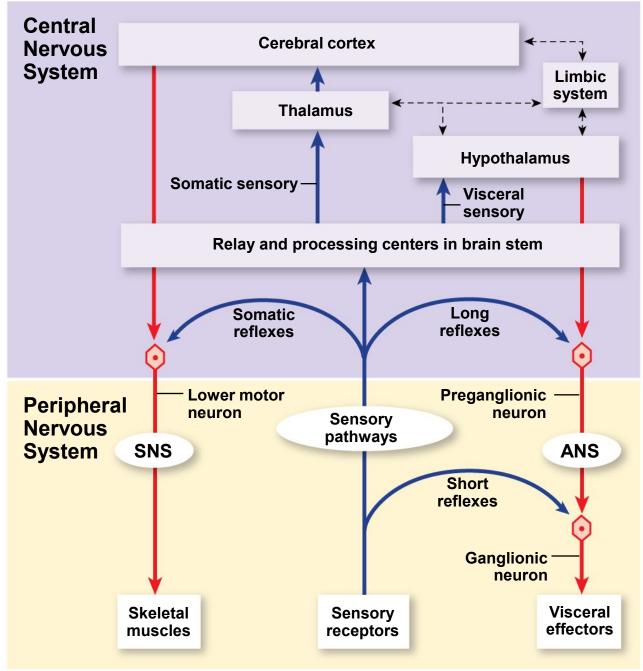
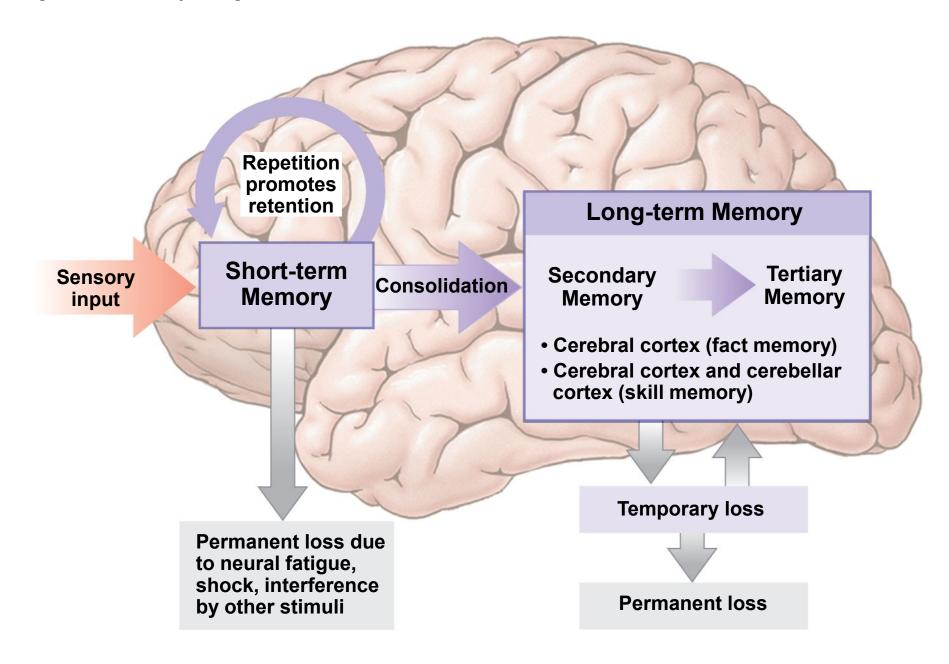

Table 16–4	Representati	Representative Visceral Reflexes					
Reflex		Stimulus	Response	Comments			
PARASYMPATHETIC REFLEXES							
Gastric and intestinal reflexes (Chapter 24)		Pressure and physical contact	Smooth muscle contractions that propel food materials and mix with secretions	Via vagus nerve			
Defecation (Chapter 24)		Distention of rectum	Relaxation of internal anal sphincter	Requires voluntary relaxation of external anal sphincter			
Urination (Chapter 26)		Distention of urinary bladder	Contraction of walls of urinary bladder; relaxation of internal urethral sphincter	Requires voluntary relaxation of external urethral sphincter			
Direct light and consensual light reflexes (Chapter 14)		Bright light shining in eye(s)	Constriction of pupils of both eyes				
Swallowing reflex (Chapter 24)		Movement of food and liquids into pharynx	Smooth muscle and skeletal muscle contractions	Coordinated by medullary swallowing center			
Coughing reflex (Chapter 23)		Irritation of respiratory tract	Sudden explosive ejection of air	Coordinated by medullary coughing center			
Baroreceptor reflex (Chapters 17, 20, 21)		Sudden rise in carotid blood pressure	Reduction in heart rate and force of contraction	Coordinated in cardiac centers of medulla oblongata			
Sexual arousal (Chapter 28)		Erotic stimuli (visual or tactile)	Increased glandular secretions, sensitivity, erection				

Table 16–4	Representati	presentative Visceral Reflexes					
Reflex		Stimulus	Response	Comments			
SYMPATHETIC REFLEXES							
Cardioacceleratory reflex (Chapter 21)		Sudden decline in blood pressure in carotid artery	Increase in heart rate and force of contraction	Coordinated in cardiac centers of medulla oblongata			
Vasomotor reflexes (Chapter 21)		Changes in blood pressure in major arteries	Changes in diameter of peripheral vessels	Coordinated in vasomotor center in medulla oblongata			
Pupillary reflex (Chapter 17)		Low light level reaching visual receptors	Dilation of pupil				
Ejaculation (in males) (Chapter 28)		Erotic stimuli (tactile)	Skeletal muscle contractions ejecting semen				

16-7 Visceral Reflexes Regulate the ANS

- Higher Levels of Autonomic Control
 - Simple reflexes from spinal cord provide rapid and automatic responses
 - Complex reflexes coordinated in medulla oblongata
 - Contains centers and nuclei involved in:
 - Salivation
 - Swallowing
 - Digestive secretions
 - Peristalsis
 - Urinary function
 - Regulated by hypothalamus


Figure 16-12 A Comparison of Somatic and Autonomic Function

- Memory
 - Fact memories
 - Are specific bits of information
 - Skill memories
 - Learned motor behaviors
 - Incorporated at unconscious level with repetition
 - Programmed behaviors stored in appropriate area of brain stem
 - Complex are stored and involve motor patterns in the basal nuclei, cerebral cortex, and cerebellum

- Memory
 - Short-term memories
 - Information that can be recalled immediately
 - Contain small bits of information
 - Primary memories

- Memory
 - Long-term memories
 - Memory consolidation conversion from shortterm to long-term memory
 - Two types of long-term memory
 - Secondary memories fade and require effort to recall
 - 2. *Tertiary memories* are with you for life

- Brain Regions Involved in Memory Consolidation and Access
 - Amygdaloid body and hippocampus
 - Nucleus basalis
 - Cerebral cortex

- Amygdaloid Body and Hippocampus
 - Are essential to memory consolidation
 - Damage may cause:
 - Inability to convert short-term memories to new longterm memories
 - Existing long-term memories remain intact and accessible

- Nucleus Basalis
 - Cerebral nucleus near diencephalon
 - Plays uncertain role in memory storage and retrieval
 - Tracts connect with hippocampus, amygdaloid body, and cerebral cortex
 - Damage changes emotional states, memory, and intellectual functions

- Cerebral Cortex
 - Stores long-term memories
 - Conscious motor and sensory memories referred to association areas
 - Occipital and temporal lobes

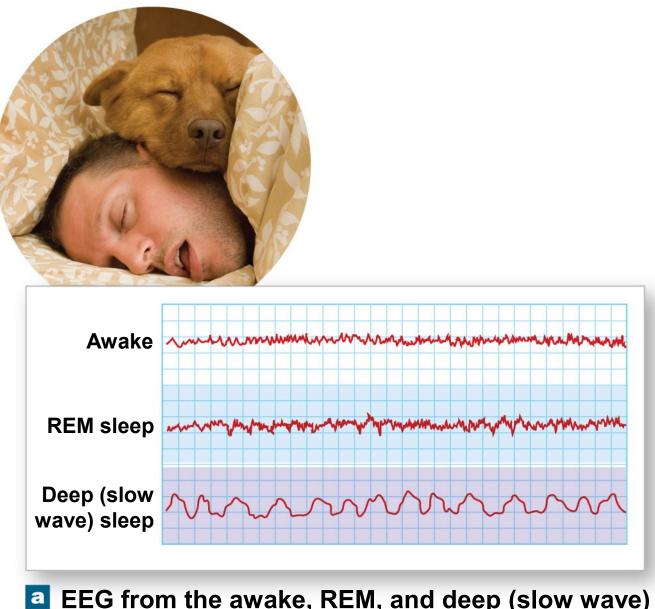
- Cerebral Cortex
 - Visual association area
 - Auditory association area
 - Speech center
 - Frontal lobes
 - Related information stored in other locations
 - If storage area is damaged, memory will be incomplete

- Cellular Mechanisms of Memory Formation and Storage
 - Involves anatomical and physiological changes in neurons and synapses
 - Increased neurotransmitter release
 - Facilitation at synapses
 - Formation of additional synaptic connections

- Cellular Mechanisms of Memory Formation and Storage
 - Basis of memory storage
 - Processes create anatomical changes
 - Facilitate communication along specific neural circuit

- Cellular Mechanisms of Memory Formation and Storage
 - Efficient conversion of short-term memory
 - Takes at least 1 hour
 - Repetition crucial
 - Factors of conversion
 - Nature, intensity, and frequency of original stimulus
 - Strong, repeated, and exceedingly pleasant or unpleasant events likely converted to long-term memories

- Cellular Mechanisms of Memory Formation and Storage
 - Drugs stimulate CNS
 - Caffeine
 - Enhance memory consolidation through facilitation


- States of Consciousness
 - Deep sleep
 - Also called *slow-wave or Non-REM (NREM)* sleep
 - Entire body relaxes
 - Cerebral cortex activity minimal
 - Heart rate, blood pressure, respiratory rate, and energy utilization decline up to 30%

- States of Consciousness
 - Rapid eye movement (REM) sleep
 - Active dreaming occurs
 - Changes in blood pressure and respiratory rate
 - Less receptive to outside stimuli than in deep sleep
 - Muscle tone decreases markedly
 - Intense inhibition of somatic motor neurons
 - Eyes move rapidly as dream events unfold

- States of Consciousness
 - Nighttime sleep pattern
 - Alternates between levels
 - Begins in deep sleep
 - REM periods average 5 minutes in length; increase to
 20 minutes over 8 hours

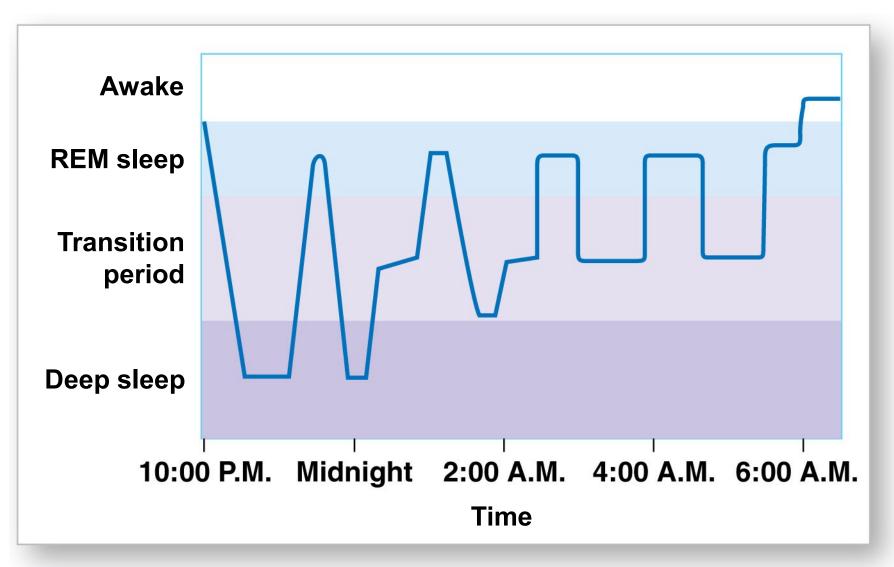

- Sleep
 - Has important impact on CNS
 - Produces only minor changes in physiological activities of organs and systems
 - Extended periods without sleep lead to disturbances in mental function

Figure 16-14a Levels of Sleep

EEG from the awake, REM, and deep (slow wave) sleep states. The EEG pattern during REM sleep resembles the alpha waves typical of awake adults.

Figure 16-14b Levels of Sleep

Typical pattern of sleep stages in a healthy young adult during a single night's sleep.