3.2: Compound Statements and Connective Notes

1. Express compound statements in symbolic form.

<u>Simple</u> statements convey one idea with no connecting words.

Compound statements combine two or more simple statements using connectives.

Connectives include words such as	and	_, _ <mark>or</mark> _	, <mark>if</mark> _		<u>then</u>	, and if and only if.
-----------------------------------	-----	------------------------	---------------------	--	-------------	-----------------------

If p and q are two simple statements, then the compound statement "p and q" is symbolized by $p \land q$.

Th	e compound	statement formed by connecting statements with the word and is called a
	conjunction	The symbol for <i>and</i> is \wedge .

Let *p* and *q* represent the following simple statements:

- p: It is after 5 P.M.
- q: They are working.

Write each compound statement below in symbolic form:

<mark>o ∧ q</mark> a. It is after 5 P.M. and	p ∧ ~q b. It is after 5 P.M. and
they are working.	they are not working.

Common English Expressions for *p*^*q*

Symbolic Statement	English Statement	Example <i>p</i> : It is after 5 P.M. <i>q</i> : They are working.
$p \land q$	p and q .	It is after 5 P.M. and they are working.
$p \land q$	<i>p</i> but <i>q</i> .	It is after 5 P.M., but they are working.
$p \land q$	p yet q.	It is after 5 P.M., yet they are working.
$p \wedge q$	p nevertheless q.	It is after 5 P.M.; nevertheless, they are working.

Or Statements

<u>Disjunction</u> is a compound statement formed using the **inclusive or** represented by the symbol \lor . Thus, "*p* or *q* or both" is symbolized by $p \lor q$.

The connective or can mean two different things.

Consider the statement: I visited London or Paris.

This statement can mean (**exclusive or**) - I visited London or Paris but not both. It can also mean (**inclusive or**) - I visited London or Paris or both.

Here is an example of Translating from English to Symbolic Form:

Let *p* and *q* represent the following simple statements:

p: The bill receives majority approval.

q: The bill becomes a law.

Write each compound statement below in symbolic form:

 $\underline{\mathbf{p} \lor \mathbf{q}}$ **a.** The bill receives majority approval or the bill becomes a law.

 $\underline{p \vee \mathbf{\tilde{q}}}$ **b.** The bill receives majority approval or the bill does not become a law.

If-Then Statements

The compound statement "If *p*, then *q* is symbolized by $p \rightarrow q$.

This is called a <u>conditional</u> statement.

The statement before the \rightarrow is called the <u>antecedent</u>

The statement after the \rightarrow is called the <u>consequent</u>.

Here are examples of writing if-then statements in symbolic form:

Let *p* and *q* represent the following simple statements:

p: A person is a father.

q: A person is a male.

Write each compound statement below in symbolic form:

 $\underline{p \rightarrow q}_a$. If a person is a father, then that person is a male.

 $\underline{ \sigma q \rightarrow p}$ **b.** If a person is not a male, then that person is not a father.

Symbolic Statement	English Statement	Example p: A person is a father. q: A person is a male.
$p \rightarrow q$	If p then q .	If a person is a father, then that person is a male.
$p \rightarrow q$	<i>q</i> if <i>p</i> .	A person is a male, if that person is a father.
$p \rightarrow q$	<i>p</i> is sufficient for <i>q</i> .	Being a father is sufficient for being a male.
$p \rightarrow q$	q is necessary for p.	Being a male is necessary for being a father.
$p \rightarrow q$	<i>p</i> only if <i>q</i> .	A person is a father only if that person is a male.
$p \rightarrow q$	Only if q, p.	Only if a person is a male is that person a father.

<u>**Biconditional**</u> statements are conditional statements that are true if the statement is still true when the antecedent and consequent are reversed.

The compound statement "p if and only if q"

```
(abbreviated as iff) is symbolized by p \leftrightarrow q.
```

If a person is a father, then that person is a male.
If a person is an unmarried male, then that person is a bachelor.
If a person is an unmarried male, then that person is a bachelor.
If a person is a bachelor.

Common English Expressions for $p \leftrightarrow q$

Symbolic Statement	English Statement	Example p: A person is an unmarried male. q: A person is a bachelor.
$p \leftrightarrow q$	<i>p</i> if and only if <i>q</i> .	A person is an unmarried male if and only if that person is a bachelor.
$p \leftrightarrow q$	q if and only if p.	A person is a bachelor if and only if that person is an unmarried male.
p↔q	<i>If p</i> then <i>q, and if q then p</i> .	If a person is an unmarried male then that person is a bachelor, and if a person is a bachelor, then that person is an unmarried male.
$p \leftrightarrow q$	<i>p</i> is necessary and sufficient for <i>q</i> .	Being an unmarried male is necessary and sufficient for being a bachelor.
p ↔q	q is necessary and sufficient for p.	Being a bachelor is necessary and sufficient for being an unmarried male.

Statements of Symbolic Logic

Name	<mark>Symbolic Form</mark>	Common English Translations
Negation	~p	Not <i>p</i> . It is not true that <i>p</i> .
Conjunction	<mark>p∧q</mark>	p and q, p but q.
Disjunction	<mark>p∨q</mark>	<mark>p or q.</mark>
Conditional	<mark>p → q</mark>	If <i>p</i> , then <i>q</i> , <i>p</i> is sufficient for <i>q</i> , <i>q</i> is necessary for <i>p</i> .
Biconditional	<mark>p ↔ q</mark>	<i>p</i> if and only if <i>q, p</i> is necessary and sufficient for <i>q</i> .

2. Express symbolic statements with and without parentheses in English.

Here are examples of symbolic statements in English.

Let *p* and *q* represent the following simple statements:

- p: She is wealthy.
- *q*: She is happy.

Write each of the following symbolic statements in words:

a. $\sim (p \land q)$

It is not true that she is wealthy and happy.

b. $\sim p \land q$

She is not wealthy and she is happy.

c. ~(*p* ∨ *q*)

She is neither wealthy nor happy. (Literally, it is not true that she is either wealthy or happy.

Let *p*, *q*, and *r* represent the following simple statements:

p: A student misses lecture.

- q: A student studies.
- *r*: A student fails.

Write each of these symbolic statements in words:

```
a. (q \land \ \ p) \rightarrow \ r
```

If a student studies and does not miss lecture, then the student does not fail.

Write each of these symbolic statements in words:

b. $q \land (\sim p \rightarrow \sim r)$

A student studies, and if the student does not miss lecture, then the student does not fail.

3. Dominance of Connectives – Use the dominance of connectives.

If a symbolic statement appears without parentheses, statements before and after the most *dominant connective* should be grouped.

The dominance of connectives used in symbolic logic is defined in the following order.

Statement	Most Dominant Connective Highlighted in <mark>Red</mark>	Statements Meaning Clarified with Grouping Symbols	Type of Statement
$p \rightarrow q \wedge \sim r$	$p \rightarrow q \wedge \sim r$	$p \rightarrow (q \land \neg r)$	Conditional
$p \wedge q \rightarrow \sim r$	$p \wedge q \rightarrow \sim r$	$(p \land q) \rightarrow \sim r$	Conditional
$p \leftrightarrow q \rightarrow r$	$p \leftrightarrow q \rightarrow r$	$p \leftrightarrow (q \rightarrow r)$	Biconditional
$p \rightarrow q \leftrightarrow r$	$p \rightarrow q \leftrightarrow r$	$(p \rightarrow q) \leftrightarrow r$	Biconditional
$p \wedge \neg q \rightarrow r \lor s$	$p \wedge \sim q \rightarrow r \vee s$	$(p \land \neg q) \to (r \lor s)$	Conditional
$p \wedge q \vee r$	$p \wedge q \vee r$	The meaning is ambiguous.	?
1. Negation	on, ~ 2. Conjunction, ∧ Disjunction, ∨ Same level of dominance	3. Conditional, → 4. Bico	nditional, ↔

Using the Dominance of Connectives

Grouping symbols must be given with this statement to determine whether it means $(p \land q) \lor r$, a disjunction, or $p \land (q \lor r)$, a conjunction.

Here are examples of using dominance connectives:

Let *p*, *q*, and *r* represent the following simple statements.

- p: I fail the course.
- q: I study hard.
- *r*: I pass the final.

Write each compound statement in symbolic form:

a. I do not fail the course if and only if I study hard and I pass the final.

 $\sim p \leftrightarrow (q \wedge r)$

b. I do not fail the course if and only if I study hard, and I pass the final.

<mark>(~p ↔ q) ∧ r</mark>

Write each compound statement below in symbolic form:

I do not fail the course if and only if I study hard and I pass the final.

- p: I fail the course.
- q: I study hard.
- r: I pass the final.

l do not fail the course	iff	l study hard	and	I pass the final.
$\sim p$	\leftrightarrow	q	\wedge	r

Because the most dominant connective that appears is \leftrightarrow , the symbolic form with parentheses is $\tilde{p} \leftrightarrow (q \land r)$.

I do not fail the course iff I study hard, and I pass the final.

In this statement, the comma indicates the grouping, so it is not necessary to apply the dominance of connectives. The symbolic form of the statement is $(\stackrel{\sim p \leftrightarrow q)}{\frown} \frac{r}{\cdot}$.