CAMPBELL BIOLOGY IN FOCUS

URRY • CAIN • WASSERMAN • MINORSKY • REECE

The Chromosomal Basis of Inheritance

 γ

Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University

SECOND EDITION

© 2016 Pearson Education, Inc.

Overview: Locating Genes Along Chromosomes

- Mendel's "hereditary factors" were genes
- Today we know that genes are located on chromosomes
- The location of a particular gene can be seen by tagging isolated chromosomes with a fluorescent dye that highlights the gene

- Mitosis and meiosis were first described in the late 1800s
- The chromosome theory of inheritance states
 - Mendelian genes have specific loci (positions) on chromosomes
 - Chromosomes undergo segregation and independent assortment
- The behavior of chromosomes during meiosis can account for Mendel's laws of segregation and independent assortment

LAW OF SEGREGATION

F₂ Generation

Fertilization recombines the *R* and *r* alleles at random. An $F_1 \times F_1$ cross-fertilization 9 (3×3) : 3 (2×3) : 1 (2×3)

LAW OF INDEPENDENT ASSORTMENT

Fertilization results in the 9:3:3:1 phenotypic ratio in the F₂ generation. **Concept 12.1: Morgan showed that Mendelian inheritance has its physical basis in the behavior of chromosomes:** *scientific inquiry*

 The first solid evidence associating a specific gene with a specific chromosome came from the work of Thomas Hunt Morgan in the early 1900s

Morgan's Choice of Experimental Organism

- Morgan selected a species of fruit fly, Drosophila melanogaster, as his research organism
- Several characteristics make fruit flies a convenient organism for genetic studies
 - They produce many offspring
 - A generation can be bred every two weeks
 - They have only four pairs of chromosomes

- Morgan noted wild-type, or normal, phenotypes that were common in the fly populations
- Traits alternative to the wild type are called mutant phenotypes
- The first mutant phenotype he discovered was a fly with white eyes instead of the wild type red

Correlating Behavior of a Gene's Alleles with Behavior of a Chromosome Pair

- In one experiment, Morgan mated male flies with white eyes (mutant) with female flies with red eyes (wild type)
 - The F₁ generation all had red eyes
 - The F₂ generation showed the classical 3:1 red:white ratio, but only males had white eyes
- Morgan concluded that the eye color was related to the sex of the fly

- Morgan determined that the white-eyed mutant allele must be located on the X chromosome
- Morgan's finding supported the chromosome theory of inheritance

P
Generation $\searrow \quad \overleftrightarrow{} \quad \overleftrightarrow{} \quad \overleftrightarrow{} \quad \overleftrightarrow{} \quad \checkmark$ F1
Generation $\bigvee \quad \swarrow \quad \swarrow \quad \checkmark$ F2
Generation $\bigwedge \quad \checkmark$ F3
Generation $\bigwedge \quad \checkmark$ F1
Generation $\bigwedge \quad \land$ F2
Mad red eyes.

Conclusion

Concept 12.2: Sex-linked genes exhibit unique patterns of inheritance

The behavior of the members of the pair of sex chromosomes can be correlated with the behavior of the two alleles of the eye-color gene white

The Chromosomal Basis of Sex

- Humans and other mammals have two types of sex chromosomes: a larger X chromosome and a smaller Y chromosome
- Only the ends of the Y chromosome have regions that are homologous with corresponding regions of the X chromosome
- The SRY gene on the Y chromosome is required for the developments of testes

- Females are XX, and males are XY
- Each ovum contains an X chromosome, while a sperm may contain either an X or a Y chromosome
- Other animals have different methods of sex determination

- A gene that is located on either sex chromosome is called a sex-linked gene
- Genes on the Y chromosome are called Y-linked genes; there are few of these
- Genes on the X chromosome are called X-linked genes

Inheritance of X-Linked Genes

- Most Y-linked genes help determine sex
- The X chromosomes have genes for many characters unrelated to sex

- X-linked genes follow specific patterns of inheritance
- For a recessive X-linked trait to be expressed
 - A female needs two copies of the allele (homozygous)
 - A male needs only one copy of the allele (hemizygous)
- X-linked recessive disorders are much more common in males than in females

© 2016 Pearson Education, Inc.

- Some disorders caused by recessive alleles on the X chromosome in humans:
 - Color blindness (mostly X-linked)
 - Duchenne muscular dystrophy
 - Hemophilia

X Inactivation in Female Mammals

- In mammalian females, one of the two X chromosomes in each cell is randomly inactivated during embryonic development
- The inactive X condenses into a Barr body
- If a female is heterozygous for a particular gene located on the X chromosome, she will be a mosaic for that character

Concept 12.3: Linked genes tend to be inherited together because they are located near each other on the same chromosome

- Each chromosome has hundreds or thousands of genes (except the Y chromosome)
- Genes located on the same chromosome that tend to be inherited together are called linked genes

How Linkage Affects Inheritance

- Morgan did experiments with fruit flies that show how linkage affects inheritance of two characters
- Morgan crossed flies that differed in traits of body color and wing size

- Morgan found that body color and wing size are usually inherited together in specific combinations (parental phenotypes)
- He reasoned that since these genes did not assort independently, they were on the same chromosome

F₁ dihybrid female and homozygous recessive male in testcross

Most offspring
- However, nonparental phenotypes were also produced
- Understanding this result involves exploring genetic recombination, the production of offspring with combinations of traits differing from either parent

Experiment

Genes on same

chromosome:

Results

Experiment

P Generation (homozygous) Wild type (gray body, normal wings)

b⁺ *b*⁺ *vg*⁺ *vg*⁺

Double mutant (black body, vestigial wings)

bb vg vg

F₁ dihybrid testcross Wild-type F₁ dihybrid (gray body, normal wings)

 $b^+b vg^+vg$

×

Homozygous recessive (black body, vestigial wings)

bb vgvg

Experiment

PREDICTED RATIOS

Genes on different chromosomes:	1	:	1	:	1	:	1	
Genes on same chromosome:	1	:	1	:	0	:	0	
Results	965	:	944	:	206	:	185	

© 2016 Pearson Education, Inc.

Genetic Recombination and Linkage

 The genetic findings of Mendel and Morgan relate to the chromosomal basis of recombination

Recombination of Unlinked Genes: Independent Assortment of Chromosomes

- Mendel observed that combinations of traits in some offspring differ from either parent
- Offspring with a phenotype matching one of the parental phenotypes are called parental types
- Offspring with nonparental phenotypes (new combinations of traits) are called recombinant types, or recombinants
- A 50% frequency of recombination is observed for any two genes on different chromosomes

Recombination of Linked Genes: Crossing Over

- Morgan discovered that even when two genes were on the same chromosome, some recombinant phenotypes were observed
- He proposed that some process must occasionally break the physical connection between genes on the same chromosome
- That mechanism was the crossing over between homologous chromosomes

Animation: Crossing Over

P generation (homozygous)

Wild type (gray body, normal wings)

Double mutant (black body, vestigial wings)

b

b

vg

vg

F₁ dihybrid testcross

© 2016 Pearson Education, Inc.

New Combinations of Alleles: Variation for Natural Selection

- Recombinant chromosomes bring alleles together in new combinations in gametes
- Random fertilization increases even further the number of variant combinations that can be produced
- This abundance of genetic variation is the raw material upon which natural selection works

Mapping the Distance Between Genes Using Recombination Data: *Scientific Inquiry*

- Alfred Sturtevant, one of Morgan's students, constructed a genetic map, an ordered list of the genetic loci along a particular chromosome
- Sturtevant predicted that the farther apart two genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency

- A linkage map is a genetic map of a chromosome based on recombination frequencies
- Distances between genes can be expressed as map units; one map unit represents a 1% recombination frequency

- Genes that are far apart on the same chromosome can have a recombination frequency near 50%
- Such genes are physically connected, but genetically unlinked

- Sturtevant used recombination frequencies to make linkage maps of fruit fly genes
- Using methods like chromosomal banding, geneticists can develop cytogenetic maps of chromosomes
- Cytogenetic maps indicate the positions of genes with respect to chromosomal features

Wild-type phenotypes

Concept 12.4: Alterations of chromosome number or structure cause some genetic disorders

- Large-scale chromosomal alterations in humans and other mammals often lead to spontaneous abortions (miscarriages) or cause a variety of developmental disorders
- Plants tolerate such genetic changes better than animals do

Abnormal Chromosome Number

- In nondisjunction, pairs of homologous chromosomes do not separate normally during meiosis
- As a result, one gamete receives two of the same type of chromosome, and another gamete receives no copy

Video: Nondisjunction

- Aneuploidy results from fertilization involving gametes in which nondisjunction occurred
- Offspring with this condition have an abnormal number of a particular chromosome

- A monosomic zygote has only one copy of a particular chromosome
- A trisomic zygote has three copies of a particular chromosome

- Polyploidy is a condition in which an organism has more than two complete sets of chromosomes
 - Triploidy (3n) is three sets of chromosomes
 - Tetraploidy (4n) is four sets of chromosomes
- Polyploidy is common in plants, but not animals
- Polyploids are more normal in appearance than aneuploids

Alterations of Chromosome Structure

- Breakage of a chromosome can lead to four types of changes in chromosome structure
 - Deletion removes a chromosomal segment
 - Duplication repeats a segment
 - Inversion reverses orientation of a segment within a chromosome
 - Translocation moves a segment from one chromosome to another

(a) Deletion

(b) Duplication

- A diploid embryo that is homozygous for a large deletion is likely missing a number of essential genes; such a condition is generally lethal
- Duplications and translocations also tend to be harmful
- In inversions, the balance of genes is normal but phenotype may be influenced if the expression of genes is altered

Human Disorders Due to Chromosomal Alterations

- Alterations of chromosome number and structure are associated with some serious disorders
- Some types of aneuploidy upset the genetic balance less than others, resulting in individuals surviving to birth and beyond
- These surviving individuals have a set of symptoms, or syndrome, characteristic of the type of aneuploidy

Down Syndrome (Trisomy 21)

- Down syndrome is an aneuploid condition that results from three copies of chromosome 21
- It affects about one out of every 830 children born in the United States
- The frequency of Down syndrome increases with the age of the mother, a correlation that has not been explained

Aneuploidy of Sex Chromosomes

- Nondisjunction of sex chromosomes produces a variety of aneuploid conditions
- Klinefelter syndrome is the result of an extra chromosome in a male, producing XXY individuals
- About one in every 1,000 males is born with an extra Y chromosome (XYY) and does not exhibit any defined syndrome
- Females with trisomy X (XXX) have no unusual physical features except being slightly taller than average

- Monosomy X, called Turner syndrome, produces X0 females, who are sterile
- It is the only known viable monosomy in humans

Disorders Caused by Structurally Altered Chromosomes

- The syndrome cri du chat ("cry of the cat") results from a specific deletion in chromosome 5
- A child born with this syndrome is severely intellectually disabled and has a catlike cry; individuals usually die in infancy or early childhood
- Certain cancers, including chronic myelogenous leukemia (CML), are caused by translocations of chromosomes

Figure 12.UN03-1

Offspring from testcross of AaBb (F ₁) × aabb	Purple stem/short petals (<i>A–B–</i>)	Green stem/short petals (<i>aaB</i> –)	Purple stem/long petals (<i>A–bb</i>)	Green stem/long petals (<i>aabb</i>)
Expected ratio if the genes are unlinked	1	1	1	1
Expected number of offspring (of 900)				
Observed number of offspring (of 900)	220	210	231	239

Testcross offspring	Expected (e)	Observed (o)	Deviation (o – e)	(o – e)²	(o – e)²/e
(<i>A</i> – <i>B</i> –)		220			
(<i>aaB</i> –)		210			
(A–bb)		231			
(aabb)		239			

The alleles of unlinked genes are either on separate chromosomes (such as *d* and *e*) or so far apart on the same chromosome (*c* and *f*) that they assort independently.

Genes on the same chromosome whose alleles are so close together that they do not assort independently (such as *a*, *b*, and *c*) are said to be genetically linked.

