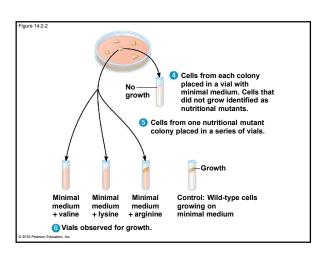
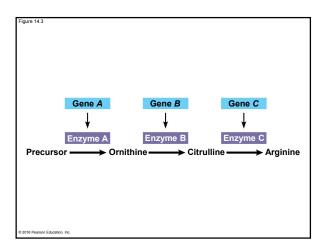
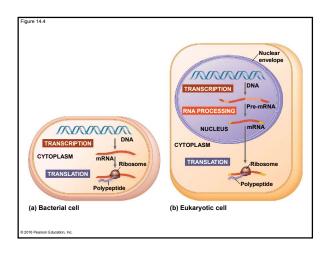

Overview: The Flow of Genetic Information

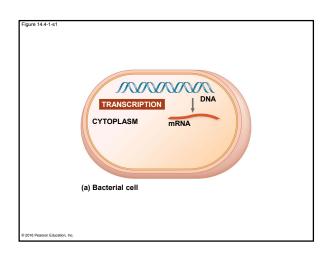

- The information content of genes is in the form of specific sequences of nucleotides in DNA
- The DNA inherited by an organism leads to specific traits by dictating the synthesis of proteins
- Proteins are the links between genotype and phenotype
- Gene expression, the process by which DNA directs protein synthesis, includes two stages: transcription and translation

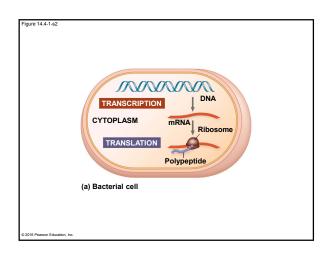
Concept 14.1: Genes specify proteins via transcription and translation	
How was the fundamental relationship between genes and proteins discovered?	
© 2016 Peason Education, Inc.	
Evidence from the Study of Metabolic Defects	
 In 1902, British physician Archibald Garrod first suggested that genes dictate phenotypes through 	
enzymes that catalyze specific chemical reactions He thought symptoms of an inherited disease reflect	
an inability to synthesize a certain enzyme Cells synthesize and degrade molecules in a series	
of steps, a metabolic pathway	
© 2016 Peason Education, Inc.	
Nutritional Mutants: Scientific Inquiry	
 Beadle and Tatum disabled genes in bread mold one by one and looked for phenotypic changes 	
They studied the haploid bread mold because it would be easier to detect recessive mutations	
 They studied mutations that altered the ability of the fungus to grow on minimal medium 	
© 2016 Peason Education, Inc.	

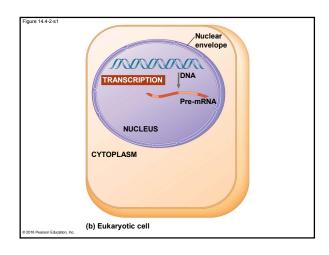


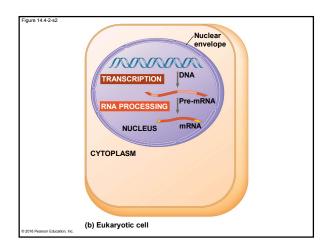
- The researchers amassed a valuable collection of Neurospora mutant strains, catalogued by their defects
- For example, one set of mutants all required arginine for growth
- It was determined that different classes of these mutants were blocked at a different step in the biochemical pathway for arginine biosynthesis

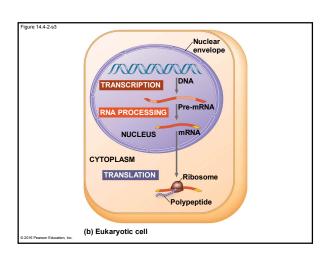

0 2016 Pearson Education In

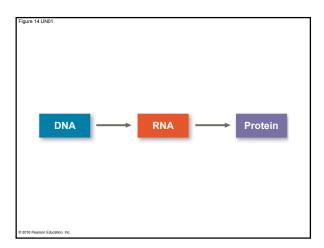



The Products of Gene Expression: A Developing Story


- Some proteins are not enzymes, so researchers later revised the one gene—one enzyme hypothesis to one gene—one protein
- Many proteins are composed of several polypeptides, each of which has its own gene
- Therefore, Beadle and Tatum's hypothesis is now restated as the one gene—one polypeptide hypothesis
- It is common to refer to gene products as proteins rather than polypeptides

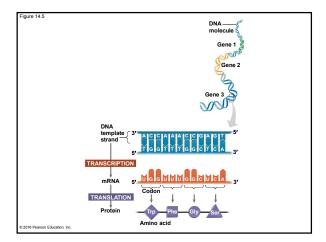

Basic Principles of Transcription and Translation	
RNA is the bridge between DNA and protein synthesis Output DNA by	
 RNA is chemically similar to DNA, but RNA has a ribose sugar instead of deoxyribose and the base uracil (U) rather than thymine (T) 	
RNA is usually single-strandedGetting from DNA to protein requires two stages:	
transcription and translation	
© 2016 Pearson Education, Inc.	
Transcription is the synthesis of RNA using information in DNA	
 Transcription produces messenger RNA (mRNA) Translation is the synthesis of a polypeptide, using 	
information in the mRNA • Ribosomes are the sites of translation	
6 2016 Pearson Education, Inc.	
	1
In bacteria, translation of mRNA can begin before transcription has finished The pulsar attacks the graph of a pulsar and a pulsar attacks. The pulsar attacks the graph of a pulsar attacks to the graph of a pulsar attacks. The pulsar attacks the graph of a pulsar attacks to the graph of a pulsar attacks. The pulsar attacks the graph of a pulsar attacks to the graph of a pulsar attacks	
 In eukaryotes, the nuclear envelope separates transcription from translation Eukaryotic RNA transcripts are modified through 	
RNA processing to yield the finished mRNA • Eukaryotic mRNA must be transported out of the	
nucleus to be translated	
	+

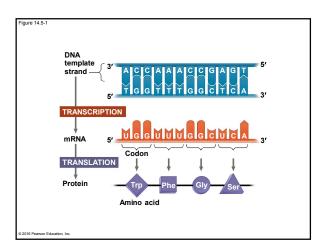




•	A primary transcript is the initial RNA transcript from any gene prior to processing
•	The <i>central dogma</i> is the concept that cells are governed by a cellular chain of command

The Genetic Code

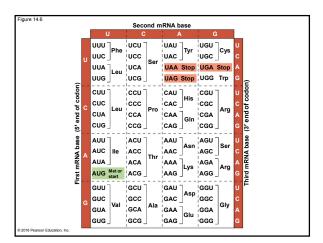

- There are 20 amino acids, but there are only four nucleotide bases in DNA
- How many nucleotides correspond to an amino acid?


© 2016 Pearson Education, Inc.

Codons: Triplets of Nucleotides

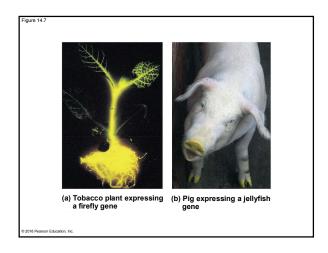
- The flow of information from gene to protein is based on a triplet code: a series of nonoverlapping, three-nucleotide words
- The words of a gene are transcribed into complementary nonoverlapping three-nucleotide words of mRNA
- These words are then translated into a chain of amino acids, forming a polypeptide

0 2016 Pearson Education, In

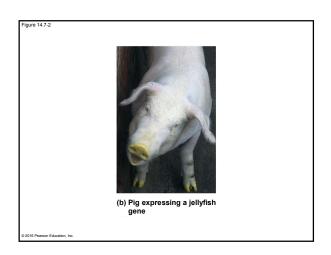


 During transcription, one of the two DNA strands, called the template strand, provides a template for ordering the sequence of complementary 	
nucleotides in an RNA transcript The template strand is always the same strand for	
any given gene	
6 2016 Peason Education, Inc.	
	1
 During translation, the mRNA base triplets, called codons, are read in the 5' to 3' direction 	
 Each codon specifies the amino acid (one of 20) to be placed at the corresponding position along a 	
polypeptide	
© 2016 Peason Education, Inc.	
Cracking the Code	
All 64 codons were deciphered by the mid-1960s	
 Of the 64 triplets, 61 code for amino acids; 3 triplets are "stop" signals to end translation 	
 The genetic code is redundant: more than one codon may specify a particular amino acid 	
But it is not ambiguous: no codon specifies more than one amino acid	
and one difficulty	
© 2016 Pearson Education, Inc.	

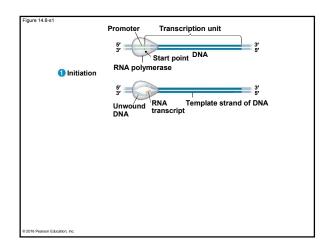
•	Codons must be read in the correct reading frame
	(correct groupings) in order for the specified
	polypeptide to be produced

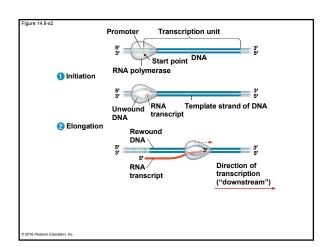

Codons are read one at a time in a nonoverlapping fashion

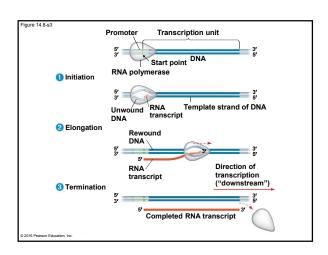
2016 Pearson Education In



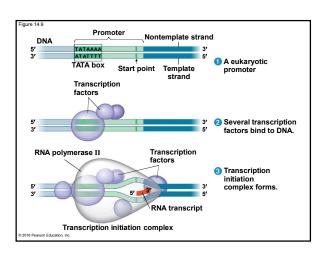
Evolution of the Genetic Code


- The genetic code is nearly universal, shared by the simplest bacteria and the most complex animals
- Genes can be transcribed and translated after being transplanted from one species to another

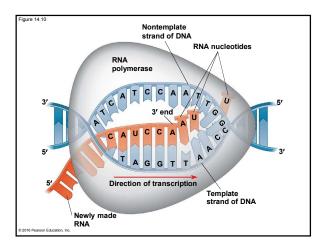




Concept 14.2: Transcription is the DNA-directed Synthesis of RNA: A Closer Look Transcription is the first stage of gene expression **Molecular Components of Transcription** • RNA synthesis is catalyzed by RNA polymerase, which pries the DNA strands apart and joins together the RNA nucleotides RNA polymerases assemble polynucleotides in the 5' to 3' direction Unlike DNA polymerases, RNA polymerases can start a chain without a primer **Animation: Transcription Introduction** Gene 1 Gene 2 Gene 3



	•
 The DNA sequence where RNA polymerase attaches is called the promoter; in bacteria, the 	
sequence signaling the end of transcription is called the terminator	
 The stretch of DNA that is transcribed is called a transcription unit 	
© 2016 Passon Education, Inc.	
« дио геври съдовой, як.	
Synthesis of an RNA Transcript	
The three stages of transcriptionInitiation	
ElongationTermination	
© 2016 Peason Education, Inc.	
RNA Polymerase Binding and Initiation of	
 Transcription Promoters signal the transcriptional start point and 	
usually extend several dozen nucleotide pairs upstream of the start point	
 Transcription factors mediate the binding of RNA polymerase and the initiation of transcription 	
© 2016 Pearson Education, Inc.	


- The completed assembly of transcription factors and RNA polymerase II bound to a promoter is called a transcription initiation complex
- A promoter DNA sequence called a TATA box is crucial in forming the initiation complex in eukaryotes

....

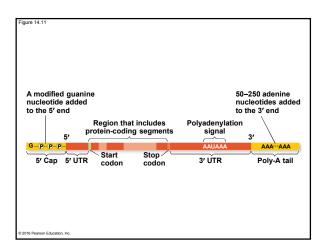
Elongation of the RNA Strand

- As RNA polymerase moves along the DNA, it untwists the double helix, 10 to 20 bases at a time
- Transcription progresses at a rate of 40 nucleotides per second in eukaryotes
- A gene can be transcribed simultaneously by several RNA polymerases

Termination of Transcription

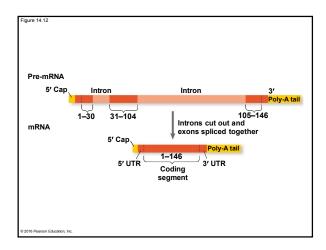
- The mechanisms of termination are different in bacteria and eukaryotes
- In bacteria, the polymerase stops transcription at the end of the terminator and the mRNA can be translated without further modification
- In eukaryotes, RNA polymerase II transcribes the polyadenylation signal sequence; the RNA transcript is released 10–35 nucleotides past this polyadenylation sequence

2016 Pearson Education, Inc.

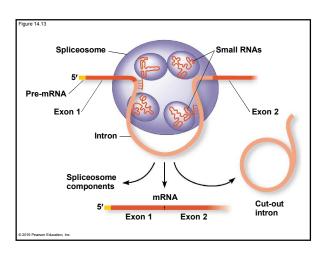

Concept 14.3: Eukaryotic cells modify RNA after transcription

- Enzymes in the eukaryotic nucleus modify premRNA (RNA processing) before the genetic messages are dispatched to the cytoplasm
- During RNA processing, both ends of the primary transcript are altered
- Also, usually some interior parts of the molecule are cut out and the other parts spliced together

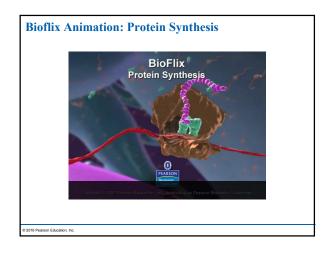
Alteration of mRNA Ends

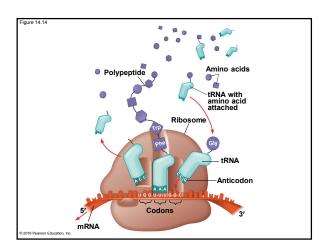

- Each end of a pre-mRNA molecule is modified in a particular way
 - The 5' end receives a modified G nucleotide 5' cap
 - The 3' end gets a poly-A tail
- These modifications share several functions
 - Facilitating the export of mRNA to the cytoplasm
 - Protecting mRNA from hydrolytic enzymes
 - Helping ribosomes attach to the 5' end

© 2016 Pearson Education, Inc.



Split Genes and RNA Splicing

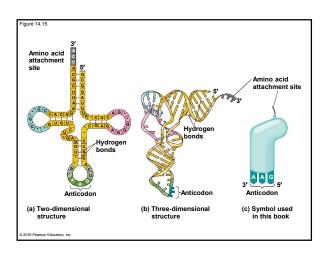

- Most eukaryotic mRNAs have long noncoding stretches of nucleotides that lie between coding regions
- The noncoding regions are called intervening sequences, or introns
- The other regions are called exons and are usually translated into amino acid sequences
- RNA splicing removes introns and joins exons, creating an mRNA molecule with a continuous coding sequence

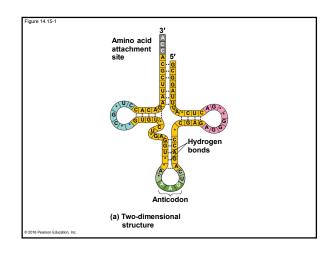


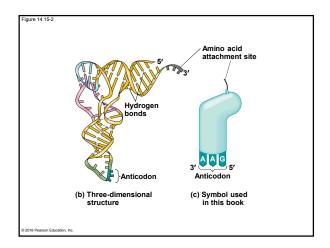
- Many genes can give rise to two or more different polypeptides, depending on which segments are used as exons
- This process is called alternative RNA splicing
- RNA splicing is carried out by spliceosomes
- Spliceosomes consist of proteins and small RNAs

Ribozymes • Ribozymes are RNA molecules that function as enzymes • In some organisms, RNA splicing can occur without proteins, or even additional RNA molecules The introns can catalyze their own splicing 2016 Pearson Education, Inc. **Concept 14.4: Translation is the RNA-directed** Synthesis of a Polypeptide: A Closer Look Genetic information flows from mRNA to protein through the process of translation **Molecular Components of Translation** A cell translates an mRNA message into protein with the help of transfer RNA (tRNA) tRNAs transfer amino acids to the growing polypeptide in a ribosome • Translation is a complex process in terms of its biochemistry and mechanics 2016 Pearson Education, Inc.

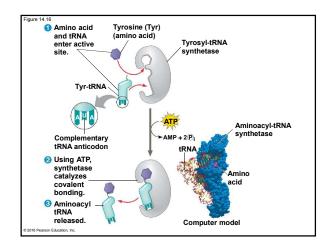
The Structure and Function of Transfer RNA


- Each tRNA can translate a particular mRNA codon into a given amino acid
- The tRNA contains an amino acid at one end and at the other end has a nucleotide triplet that can basepair with the complementary codon on mRNA

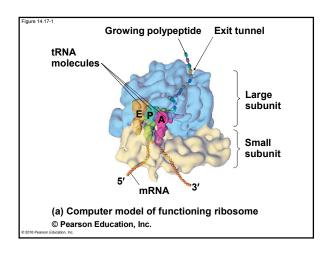

- A tRNA molecule consists of a single RNA strand that is about 80 nucleotides long
- tRNA molecules can base-pair with themselves
- Flattened into one plane, a tRNA molecule looks like a cloverleaf
- In three dimensions, tRNA is roughly L-shaped, where one end of the L contains the anticodon that base-pairs with an mRNA codon

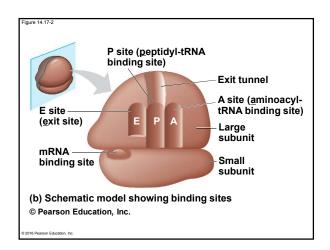

© 2016 Pearson Education In

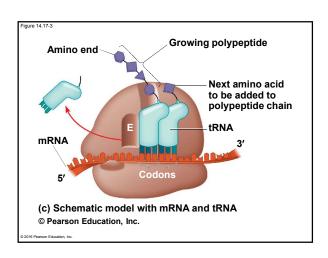
Video: tRNA Model



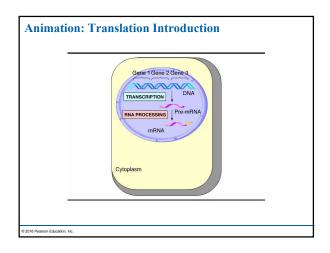
- Accurate translation requires two steps
 - First, a correct match between a tRNA and an amino acid, done by the enzyme aminoacyl-tRNA synthetase
 - Second, a correct match between the tRNA anticodon and an mRNA codon
- Flexible pairing at the third base of a codon is called wobble and allows some tRNAs to bind to more than one codon

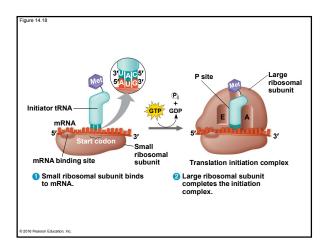

© 2016 Pearson Education, Inc.



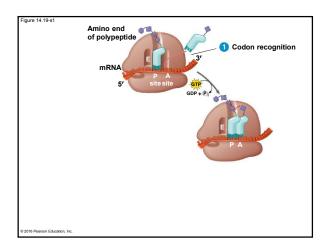

Ribosomes

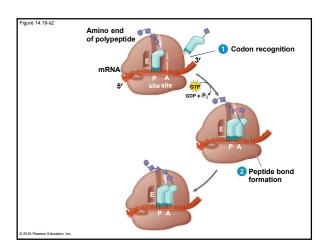
- Ribosomes facilitate specific coupling of tRNA anticodons with mRNA codons during protein synthesis
- The large and small ribosomal are made of proteins and ribosomal RNAs (rRNAs)
- In bacterial and eukaryotic ribosomes the large and small subunits join to form a ribosome only when attached to an mRNA molecule

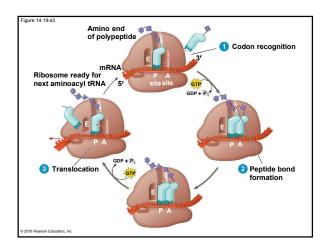




 A ribosome has three binding sites for tRNA The P site holds the tRNA that carries the growing 	
polypeptide chain The A site holds the tRNA that carries the next	
amino acid to be added to the chain The E site is the exit site, where discharged tRNAs	
leave the ribosome	
© 2016 Pearson Education, Inc.	
	1
Building a Polypeptide	
The three stages of translation	
• Initiation	
ElongationTermination	
 All three stages require protein "factors" that aid in 	
the translation process • Energy is provided by hydrolysis of GTP	
- Energy is provided by flydrolysis of GTF	
© 2016 Peason Education, Inc.	
	7
Ribosome Association and Initiation of Translation	
The initiation stage of translation brings together	
mRNA, a tRNA with the first amino acid, and the	
two ribosomal subunits • A small ribosomal subunit binds with mRNA and a	
special initiator tRNA	-
 Then the small subunit moves along the mRNA until it reaches the start codon (AUG) 	
© 2016 Pearson Education, Inc.	

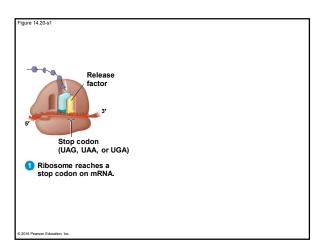


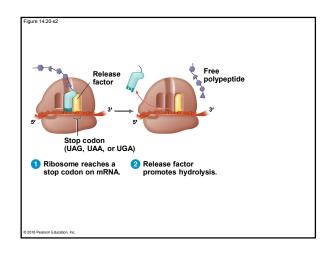

- The start codon is important because it establishes the reading frame for the mRNA
- The addition of the large ribosomal subunit is last and completes the formation of the translation initiation complex
- Proteins called initiation factors bring all these components together


Elongation of the Polypeptide Chain

- During elongation, amino acids are added one by one to the previous amino acid at the C-terminus of the growing chain
- Each addition involves proteins called elongation factors and occurs in three steps: codon recognition, peptide bond formation, and translocation
- Translation proceeds along the mRNA in a 5' to 3' direction

© 2016 Pearson Education. Inc

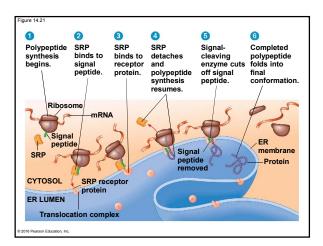




Termination of Translation

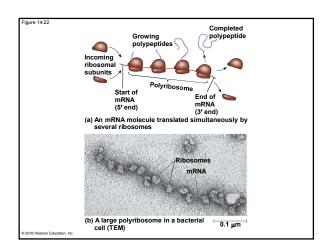
- Termination occurs when a stop codon in the mRNA reaches the A site of the ribosome
- The A site accepts a protein called a release factor
- The release factor causes the addition of a water molecule instead of an amino acid
- This reaction releases the polypeptide, and the translation assembly then comes apart

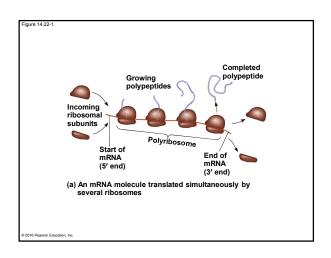
© 2016 Pearson Education, In

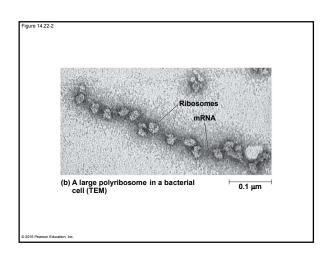

Completing and Targeting the Functional Protein

- Often translation is not sufficient to make a functional protein
- Polypeptide chains are modified after translation or targeted to specific sites in the cell

Protein Folding and Post-Translational Modifications	
During synthesis, a polypeptide chain spontaneously coils and folds into its three-	
 dimensional shape Proteins may also require post-translational modifications before doing their jobs 	
modifications before doing their jobs	
6 2016 Pearson Education, Inc.	
Targeting Polypeptides to Specific Locations	
Two populations of ribosomes are evident in cells: free ribosomes (in the cytosol) and bound	
ribosomes (attached to the ER) • Free ribosomes mostly synthesize proteins that	
function in the cytosol Bound ribosomes make proteins of the	
endomembrane system and proteins that are secreted from the cell	
© 2016 Pearson Education, Inc.	
]
Polypeptide synthesis always begins in the cytosol	
Synthesis finishes in the cytosol unless the polypeptide signals the ribosome to attach to the ER	
Polypeptides destined for the ER or for secretion are marked by a signal peptide	
are marked by a signal peptide	
6 3945 Barron Edutrino Inc	

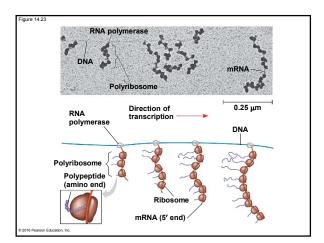

- A signal-recognition particle (SRP) binds to the signal peptide
- The SRP brings the signal peptide and its ribosome to the ER

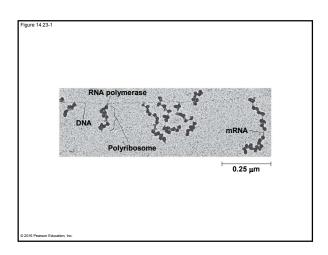

2016 Pearson Education, Inc.

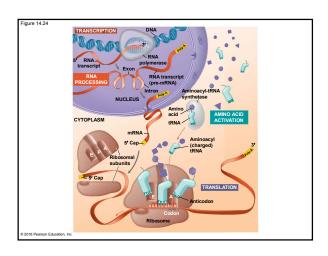


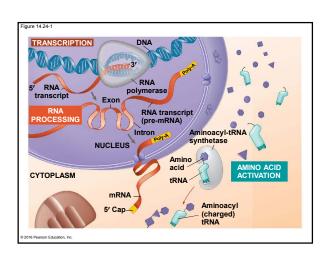
Making Multiple Polypeptides in Bacteria and Eukaryotes

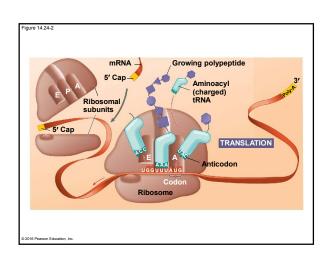
- In bacteria and eukaryotes, multiple ribosomes translate an mRNA at the same time
- Once a ribosome is far enough past the start codon, another ribosome can attach to the mRNA
- Strings of ribosomes called polyribosomes (or polysomes) can be seen with an electron microscope








- Bacteria and eukaryotes can also transcribe multiple mRNAs from the same gene
- In bacteria, the transcription and translation can take place simultaneously
- In eukaryotes, the nuclear envelope separates transcription and translation

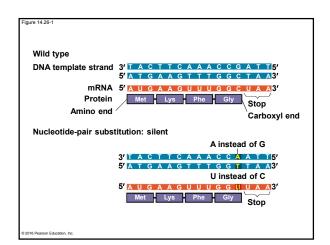

2016 Pearson Education. In:

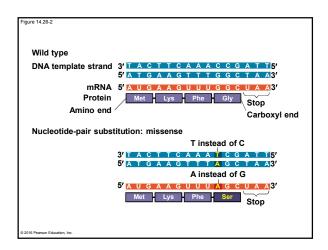


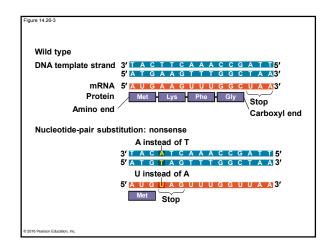
Concept 14.5: Mutations of one or a few nucleotides can affect protein structure and function

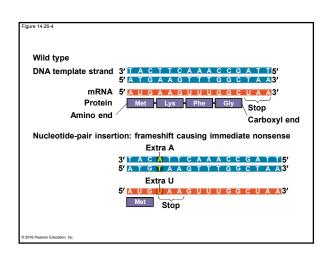
- Mutations are changes in the genetic material of a cell or virus
- Point mutations are chemical changes in just one nucleotide pair of a gene
- The change of a single nucleotide in a DNA template strand can lead to the production of an abnormal protein
- If a point mutation occurs in a gamete, it may be transmitted to offspring

© 2016 Pearson Education, Inc.




Types of Small-Scale Mutations


- Point mutations within a gene can be divided into two general categories
 - Single nucleotide-pair substitutions
 - Nucleotide-pair insertions or deletions


Substitutions

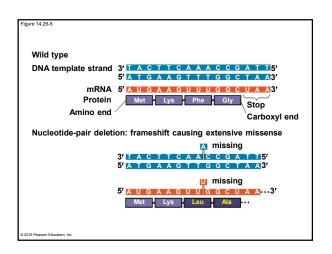
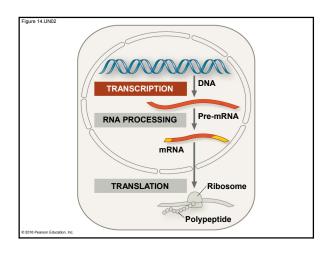
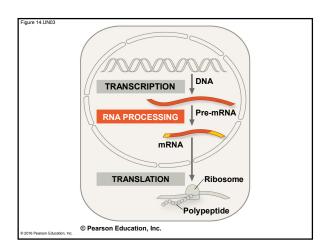
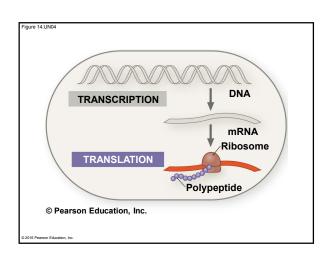
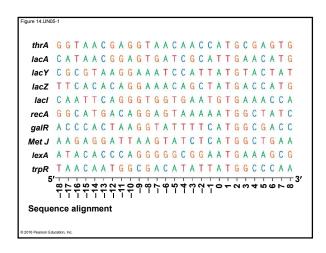

- A nucleotide-pair substitution replaces one nucleotide and its partner with another pair of nucleotides
- Silent mutations have no effect on the amino acid produced by a codon because of redundancy in the genetic code

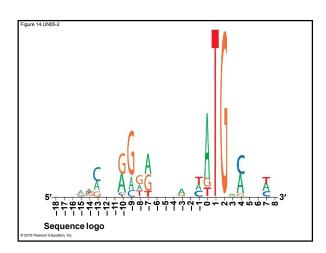
Figure 14.26-6	
Wild type	
DNA template strand	3'T A C T T C A A A C C G A T T5' 5'A T G A A G T T T G G C T A A3'
mRNA	5' A U G A A G U U U G G C U A A3'
Protein	Met Lys Phe Gly Stop
Amino end	Carboxyl end
3 nucleotide-pair dele	etion: no frameshift, but one amino acid missing
	missing
	3' TACAAACCGATT5'
	5' A T G T T T G G C T A A 3'
	A A G missing
	5' A U G U U U G G C U A A 3'
	Met Phe Gly Stop
© 2016 Pearson Education, Inc.	

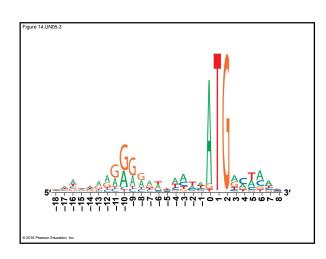

- Missense mutations still code for an amino acid, but not the correct amino acid
- Substitution mutations are usually missense mutations
- Nonsense mutations change an amino acid codon into a stop codon, nearly always leading to a nonfunctional protein

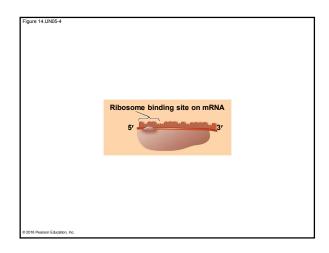

2016 Pearson Education, Inc

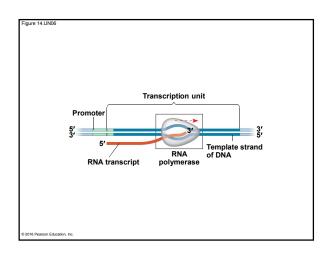

Insertions and Deletions

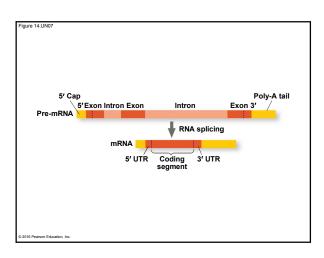

- Insertions and deletions are additions or losses of nucleotide pairs in a gene
- These mutations have a disastrous effect on the resulting protein more often than substitutions do
- Insertion or deletion of nucleotides may alter the reading frame of the genetic message, producing a frameshift mutation

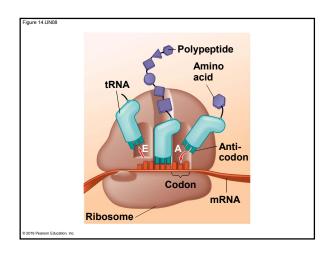

New Mutations and Mutagens	
 Spontaneous mutations can occur during DNA replication, recombination, or repair 	
 Mutagens are physical or chemical agents that can cause mutations 	
 Researchers have developed methods to test the mutagenic activity of chemicals 	
 Most cancer-causing chemicals (carcinogens) are mutagenic, and the converse is also true 	
0.2016 Person Education, Inc.	
	-
What Is a Gene? Revisiting the Question	
 The definition of a gene has evolved through the history of genetics 	
 We have considered a gene as 	
A discrete unit of inheritanceA region of specific nucleotide sequence in a	
chromosome A DNA sequence that codes for a specific	
polypeptide chain	
0.2016 Peason Eduation, Inc.	
	_
A gene can be defined as a region of DNA that can	
be expressed to produce a final functional product, either a polypeptide or an RNA molecule	
© 2016 Pearson Education Inc	†











Type of RNA	Functions
Messenger RNA (mRNA)	
Transfer RNA (tRNA)	
	Plays catalytic (ribozyme) roles and structural roles in ribosomes
Primary transcript	
Small RNAs in the spliceosome	

