



## **Overview: The Fundamental Units of Life**

All organisms are made of cells

- The cell is the simplest collection of matter that can be alive
- All cells are related by their descent from earlier cells
- Though cells can differ substantially from one another, they share common features







Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells

Most cells are too small to be seen by the unaided eye

## Microscopy

2016 Pearson Education, Inc.

- Scientists use microscopes to observe cells too small to be seen with the naked eye
- In a light microscope (LM), visible light is passed through a specimen and then through glass lenses
- Lenses refract (bend) the light, so that the image is magnified

• Three important parameters of microscopy

2016 Pearson Education, Inc.

- Magnification, the ratio of an object's image size to its real size
- Resolution, the measure of the clarity of the image, or the minimum distance between two distinguishable points
- · Contrast, visible differences in parts of the sample

- LMs can magnify effectively to about 1,000 times the size of the actual specimen
- Various techniques enhance contrast and enable cell components to be stained or labeled
- Most subcellular structures, including organelles (membrane-enclosed compartments), are too small to be resolved by light microscopy

















- Two basic types of electron microscopes (EMs) are used to study subcellular structures
- Scanning electron microscopes (SEMs) focus a beam of electrons onto the surface of a specimen, producing images that look three-dimensional
- Transmission electron microscopes (TEMs) focus a beam of electrons through a specimen

016 Pearson Education, Inc.

 TEM is used mainly to study the internal structure of cells















































- Recent advances in light microscopy
  - Labeling molecules or structures with fluorescent markers improves visualization of details
  - Confocal and other types of microscopy have sharpened images of tissues and cells
  - New techniques and labeling have improved resolution so that structures as small as 10–20  $\mu m$  can be distinguished

## **Cell Fractionation**

2016 Pearson Education, Inc.

2016 Pearson Education, Inc.

2016 Pearson Education, Inc.

- **Cell fractionation** breaks up cells and separates the components, using centrifugation
- Cell components separate based on their relative size
- Cell fractionation enables scientists to determine the functions of organelles
- Biochemistry and cytology help correlate cell function with structure

# Concept 4.2: Eukaryotic cells have internal membranes that compartmentalize their functions

- The basic structural and functional unit of every organism is one of two types of cells: prokaryotic or eukaryotic
- Organisms of the domains Bacteria and Archaea consist of prokaryotic cells
- Protists, fungi, animals, and plants all consist of eukaryotic cells

## **Comparing Prokaryotic and Eukaryotic Cells**

- Basic features of all cells
  - Plasma membrane
  - Semifluid substance called cytosol
  - Chromosomes (carry genes)
  - Ribosomes (make proteins)

- In a eukaryotic cell most of the DNA is in the nucleus, an organelle that is bounded by a double membrane
- Prokaryotic cells are characterized by having
  - No nucleus

- DNA in an unbound region called the nucleoid
- No membrane-bound organelles
- Both types of cells contain cytoplasm bound by the plasma membrane









- Eukaryotic cells are generally much larger than prokaryotic cells
- Typical bacteria are 1–5  $\mu$ m in diameter

2016 Pearson Education, Inc.

2016 Pearson Education, Inc.

- Eukaryotic cells are typically 10–100 μm in diameter



• The general structure of a biological membrane is a double layer of phospholipids







- Metabolic requirements set upper limits on the size of cells
- The ratio of surface area to volume of a cell is critical
- As the surface area increases by a factor of  $n^2$ , the volume increases by a factor of  $n^3$
- Small cells have a greater surface area relative to volume

© 2016 Pearson Education, Inc.

| Figure 4.6                                                                                                 | Surface area increases while total volume remains constant |     | creases while<br>ains constant |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----|--------------------------------|
|                                                                                                            | 1 🍞                                                        | 5   | 1                              |
| Total surface area<br>[sum of the surface areas<br>(height X width) of all box<br>sides X number of boxes] | 6                                                          | 150 | 750                            |
| Total volume<br>[height X width X length<br>X number of boxes]                                             | 1                                                          | 125 | 125                            |
| Surface-to-volume<br>(S-to-V) ratio<br>[surface area ÷<br>volume]                                          | 6                                                          | 1.2 | 6                              |
| © 2016 Pearson Education, Inc.                                                                             |                                                            |     |                                |



## A Panoramic View of the Eukaryotic Cell

- A eukaryotic cell has internal membranes that divide the cell into compartments—organelles
- The plasma membrane and organelle membranes participate directly in the cell's metabolism

































# Concept 4.3: The eukaryotic cell's genetic instructions are housed in the nucleus and carried out by the ribosomes

- The nucleus contains most of the DNA in a eukaryotic cell
- Ribosomes use the information from the DNA to make proteins

## **The Nucleus: Information Central**

2016 Pearson Education, Inc.

- The **nucleus** contains most of the cell's genes and is usually the most conspicuous organelle
- The **nuclear envelope** encloses the nucleus, separating it from the cytoplasm
- The nuclear membrane is a double membrane; each membrane consists of a lipid bilayer

- Nuclear pores regulate the entry and exit of molecules
- The shape of the nucleus is maintained by the nuclear lamina, which is composed of protein

















- In the nucleus, DNA is organized into discrete units called chromosomes
- Each chromosome is one long DNA molecule associated with proteins
- The DNA and proteins of chromosomes together are called **chromatin**
- Chromatin condenses to form discrete chromosomes as a cell prepares to divide
- The **nucleolus** is located within the nucleus and is the site of ribosomal RNA (rRNA) synthesis

## **Ribosomes: Protein Factories**

2016 Pearson Education, Inc.

- Ribosomes are complexes of ribosomal RNA and protein
- Ribosomes carry out protein synthesis in two locations
  - In the cytosol (free ribosomes)
  - On the outside of the endoplasmic reticulum or the nuclear envelope (bound ribosomes)















## Concept 4.4: The endomembrane system regulates protein traffic and performs metabolic functions in the cell

- Components of the endomembrane system
  - Nuclear envelope
  - Endoplasmic reticulum
  - Golgi apparatus
  - Lysosomes
  - Vacuoles

2016 Pearson Education, Inc.

- Plasma membrane
- These components are either continuous or connected through transfer by vesicles

## The Endoplasmic Reticulum: Biosynthetic Factory

- The endoplasmic reticulum (ER) accounts for more than half of the total membrane in many eukaryotic cells
- The ER membrane is continuous with the nuclear envelope
- There are two distinct regions of ER
  - Smooth ER: lacks ribosomes
  - Rough ER: surface is studded with ribosomes

#### © 2016 Pearson Education, Inc.

















24

## Functions of Smooth ER

## The smooth ER

- Synthesizes lipids
- Metabolizes carbohydrates
- Detoxifies drugs and poisons
- Stores calcium ions

## Functions of Rough ER

The rough ER

2016 Pearson Education, Inc.

- Has bound ribosomes, which secrete glycoproteins (proteins covalently bonded to carbohydrates)
- Distributes transport vesicles, proteins surrounded by membranes
- Is a membrane factory for the cell

## The Golgi Apparatus: Shipping and Receiving Center

- The Golgi apparatus consists of flattened membranous sacs called cisternae
- Functions of the Golgi apparatus
  - Modifies products of the ER

- Manufactures certain macromolecules
- Sorts and packages materials into transport vesicles















## Lysosomes: Digestive Compartments

2016 Pearson Education, Inc.

- A **lysosome** is a membranous sac of hydrolytic enzymes that can digest macromolecules
- Lysosomal enzymes work best in the acidic environment inside the lysosome
- The three-dimensional shape of lysosomal proteins protects them from digestion by lysosomal enzymes

- Some types of cell can engulf another cell by phagocytosis; this forms a food vacuole
- A lysosome fuses with the food vacuole and digests the molecules
- Lysosomes also use enzymes to recycle the cell's own organelles and macromolecules, a process called autophagy

























## **Vacuoles: Diverse Maintenance Compartments**

- Vacuoles are large vesicles derived from the endoplasmic reticulum and Golgi apparatus
- The solution inside a vacuole differs in composition from the cytosol

• Food vacuoles are formed by phagocytosis

016 Pearson Education, Inc.

- **Contractile vacuoles**, found in many freshwater protists, pump excess water out of cells
- Central vacuoles, found in many mature plant cells, hold organic compounds and water
- Certain vacuoles in plants and fungi carry out enzymatic hydrolysis like lysosomes









## The Endomembrane System: A Review

2016 Pearson Education, Inc.

 The endomembrane system is a complex and dynamic player in the cell's compartmental organization





Concept 4.5: Mitochondria and chloroplasts change energy from one form to another

- Mitochondria are the sites of cellular respiration, a metabolic process that uses oxygen to generate ATP
- Chloroplasts, found in plants and algae, are the sites of photosynthesis
- Peroxisomes are oxidative organelles

016 Pearson Education, Inc.

016 Pearson Education, Inc.

## The Evolutionary Origins of Mitochondria and Chloroplasts

- Mitochondria and chloroplasts display similarities with bacteria
  - Enveloped by a double membrane
  - Contain ribosomes and multiple circular DNA molecules
  - Grow and reproduce somewhat independently in cells

## The endosymbiont theory

- An early ancestor of eukaryotic cells engulfed a nonphotosynthetic prokaryotic cell, which formed an endosymbiont relationship with its host
- The host cell and endosymbiont merged into a single organism, a eukaryotic cell with a mitochondrion
- At least one of these cells may have taken up a photosynthetic prokaryote, becoming the ancestor of cells that contain chloroplasts

#### © 2016 Pearson Education, Inc.













## Mitochondria: Chemical Energy Conversion

- Mitochondria are in nearly all eukaryotic cells
- They have a smooth outer membrane and an inner membrane folded into **cristae**
- The inner membrane creates two compartments: intermembrane space and **mitochondrial matrix**
- Some metabolic steps of cellular respiration are catalyzed in the mitochondrial matrix
- Cristae present a large surface area for enzymes that synthesize ATP















## **Chloroplasts: Capture of Light Energy**

- Chloroplasts contain the green pigment chlorophyll, as well as enzymes and other molecules that function in photosynthesis
- Chloroplasts are found in leaves and other green organs of plants and in algae

- Chloroplast structure includes
  - Thylakoids, membranous sacs, stacked to form a granum
  - Stroma, the internal fluid

2016 Pearson Education, Inc.

 The chloroplast is one of a group of plant organelles called **plastids**













## **Peroxisomes: Oxidation**

© 2016 Pearson Education, Inc.

- **Peroxisomes** are specialized metabolic compartments bounded by a single membrane
- Peroxisomes produce hydrogen peroxide and then convert it to water
- Peroxisomes perform reactions with many different functions





Concept 4.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell

- The cytoskeleton is a network of fibers extending throughout the cytoplasm
- It organizes the cell's structures and activities















## Roles of the Cytoskeleton: Support and Motility

- The cytoskeleton helps to support the cell and maintain its shape
- It provides anchorage for many organelles and molecules

- It interacts with motor proteins to produce motility
- Inside the cell, vesicles and other organelles can "walk" along the tracks provided by the cytoskeleton









## **Components of the Cytoskeleton**

- Three main types of fibers make up the cytoskeleton
  - Microtubules are the thickest of the three components of the cytoskeleton
  - Microfilaments, also called actin filaments, are the thinnest components
  - Intermediate filaments are fibers with diameters in a middle range





















| Table 4.1 The Structure and Function of the Cytoskeleton                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                                                                                   |                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Property                                                                                                                                                                                                                                                                                                                                                                                                                          | Microtubules (Tubulin Polymers)                                                                              | Microfilaments (Actin Filaments)                                                                                                                                  | Intermediate Filaments                                                                                               |
| Structure                                                                                                                                                                                                                                                                                                                                                                                                                         | Hollow tubes                                                                                                 | Two intertwined strands of actin                                                                                                                                  | Fibrous proteins colled into cables                                                                                  |
| Diameter                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 nm with 15-nm lumen                                                                                       | 7 nm                                                                                                                                                              | 8–12 nm                                                                                                              |
| Protein subunits                                                                                                                                                                                                                                                                                                                                                                                                                  | Tubulin, a dimer consisting of<br>α-tubulin and β-tubulin                                                    | Actin                                                                                                                                                             | One of several different proteins (such as keratins)                                                                 |
| Main functions                                                                                                                                                                                                                                                                                                                                                                                                                    | Maintenance of cell shape; cell mo-<br>tility; chromosome movements in<br>cell division; organelle movements | Maintenance of cell shape; changes<br>In cell shape; muscle contraction; cy-<br>toplasmic streaming (plant cells); cell<br>motility; cell division (animal cells) | Maintenance of cell shape; anchor-<br>age of nucleus and certain other<br>organelles; formation of nuclear<br>lamina |
| Flucescence mitro-<br>graphs of fibroblasts,<br>Fibroblasts,<br>Fibroblasts,<br>eallype for cell blobgy<br>studies because they spread<br>structures are assy to see.<br>Instruct has been taggeted<br>instruct has been taggeted<br>instructure and the second structure<br>instructure are assy to see.<br>The DNA in the mechanism has<br>also been tagged in the<br>first micrograph (broke and<br>third micrograph (orange). | 10 µm<br>10 µm<br>Column of tubulin dimors                                                                   |                                                                                                                                                                   |                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | a Tubulin dimer                                                                                              | Actin subunit                                                                                                                                                     | Keratin proteina<br>Fibrous subunit (keratins<br>coiled together)<br>8-12 n                                          |





















## **Microtubules**

2016 Pearson Education, Inc.

© 2016 Pearson Education, Inc.

- Microtubules are hollow rods constructed from globular protein dimers called tubulin
- Functions of microtubules
  - Shape and support the cell
  - Guide movement of organelles
  - Separate chromosomes during cell division

## **Centrosomes and Centrioles**

- In animal cells, microtubules grow out from a centrosome near the nucleus
- The centrosome is a "microtubule-organizing center"
- The centrosome has a pair of **centrioles**, each with nine triplets of microtubules arranged in a ring



























## Cilia and Flagella

- Microtubules control the beating of cilia and flagella, microtubule-containing extensions projecting from some cells
- Flagella are limited to one or a few per cell, while cilia occur in large numbers on cell surfaces
- Cilia and flagella also differ in their beating patterns

• Cilia and flagella share a common structure

- A group of microtubules sheathed by the plasma membrane
- A **basal body** that anchors the cilium or flagellum
- A motor protein called **dynein**, which drives the bending movements of a cilium or flagellum





















- Dynein arms alternately contact, move, and release the outer microtubules
- The outer doublets and central microtubules are held together by flexible cross-linking proteins
- Movements of the doublet arms cause the cilium or flagellum to bend

## Microfilaments (Actin Filaments)

2016 Pearson Education, Inc.

- Microfilaments are thin solid rods, built from molecules of globular actin subunits
- The structural role of microfilaments is to bear tension, resisting pulling forces within the cell
- Bundles of microfilaments make up the core of microvilli of intestinal cells





- Microfilaments that function in cellular motility interact with the motor protein myosin
- For example, actin and myosin interact to cause muscle contraction, amoeboid movement of white blood cells, and cytoplasmic streaming in plant cells

## Intermediate Filaments

016 Pearson Education, Inc.

- Intermediate filaments are larger than microfilaments but smaller than microtubules
- Intermediate filaments are only found in the cells of some animals, including vertebrates
- They support cell shape and fix organelles in place
- Intermediate filaments are more permanent cytoskeleton elements than the other two classes

# Concept 4.7: Extracellular components and connections between cells help coordinate cellular activities

- Most cells synthesize and secrete materials that are external to the plasma membrane
- These extracellular materials are involved in many cellular functions

## **Cell Walls of Plants**

2016 Pearson Education, Inc.

2016 Pearson Education, Inc.

2016 Pearson Education, Inc.

- The **cell wall** is an extracellular structure that distinguishes plant cells from animal cells
- The cell wall protects the plant cell, maintains its shape, and prevents excessive uptake of water
- Plant cell walls are made of cellulose fibers embedded in other polysaccharides and protein

## Plant cell walls may have multiple layers

- Primary cell wall: relatively thin and flexible
- Middle lamella: thin layer between primary walls of adjacent cells
- Secondary cell wall (in some cells): added between the plasma membrane and the primary cell wall
- Plasmodesmata are channels between adjacent plant cells































## **Cell Junctions**

- Neighboring cells in an animal or plant often adhere, interact, and communicate through direct physical contact
- There are several types of intercellular junctions that facilitate this
  - Plasmodesmata
  - Tight junctions
  - Desmosomes
  - Gap junctions

2016 Pearson Education, Inc.

### **Plasmodesmata in Plant Cells**

- Plasmodesmata are channels that perforate plant cell walls
- Through plasmodesmata, water and small solutes (and sometimes proteins and RNA) can pass from cell to cell

## *Tight Junctions, Desmosomes, and Gap Junctions in Animal Cells*

- Animal cells have three main types of cell junctions
  - Tight junctions

2016 Pearson Education, Inc.

- Desmosomes
- Gap junctions

2016 Pearson Education, Inc.

All are especially common in epithelial tissue



























# The Cell: A Living Unit Greater Than the Sum of Its Parts

- None of the components of a cell work alone
- For example, a macrophage's ability to destroy bacteria involves the whole cell, coordinating components such as the cytoskeleton, lysosomes, and plasma membrane
- Cellular functions arise from cellular order

© 2016 Pearson Education, Inc.

















| Cell Component  | Structure                                                                                                                                                | Function                                                                                                                                                                               |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nucleus<br>(ER) | Surrounded by nuclear<br>envelope (double membrane)<br>perforated by nuclear pores;<br>nuclear envelope continuous<br>with endoplasmic<br>reticulum (ER) | Houses chromosomes, which<br>are made of chromatin<br>(DNA and proteins); contains<br>nucleoli, where ribosomai<br>subunits are made; pores<br>regulate entry and exit of<br>materials |
| Ribosome        | Two subunits made of<br>ribosomal RNA and proteins;<br>can be free in cytosol or<br>bound to ER                                                          | Protein synthesis                                                                                                                                                                      |



| Cell Component                                 | Structure                                                                                                                                      | Function                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Endoplasmic reticulum<br>(Nuclear<br>envelope) | Extensive network of<br>membrane-bounded tubules<br>and sacs; membrane<br>separates lumen from<br>cytosol; continuous with<br>nuclear envelope | Smooth ER: synthesis of lipids<br>metabolism of carbohydrates,<br>ca <sup>2+</sup> storage, detoxfication of<br>drugs and poisons<br>Rough ER: aids in synthesis of<br>secretory and other proteins<br>from bound ribosomes; adds<br>carbohydrates to proteins to<br>make glycoproteins; produces<br>new membrane |
| Golgi apparatus                                | Stacks of flattened<br>membranous sacs; has<br>polarity ( <i>cis</i> and <i>trans</i> faces)                                                   | Modification of proteins,<br>carbohydrates on proteins, ann<br>phospholipids; synthesis of<br>many polysaccharides; sorting<br>of Golgi products, which are<br>then released in vesicles                                                                                                                          |
| Lysosome                                       | Membranous sac of hydrolytic<br>enzymes (in animal cells)                                                                                      | Breakdown of ingested<br>substances, cell<br>macromolecules, and damaged<br>organelles for recycling                                                                                                                                                                                                              |
| Vacuole                                        | Large membrane-bounded vesicle                                                                                                                 | Digestion, storage, waste<br>disposal, water balance, plant<br>cell growth and protection                                                                                                                                                                                                                         |



| Cell Component | Structure                                                                                                                                                       | Function                                                                                                                                                                                                                                           |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mitochondrion  | Bounded by double membrane;<br>inner membrane has infoldings<br>(cristae)                                                                                       | Cellular respiration                                                                                                                                                                                                                               |
| Chloroplast    | Typically two membranes around<br>fluid stroma, which contains<br>thylakoids stacked into grana (in<br>cells of photosynthetic eukaryotes,<br>including plants) | Photosynthesis                                                                                                                                                                                                                                     |
| Peroxisome     | Specialized metabolic compartment<br>bounded by a single membrane                                                                                               | Contains enzymes that transfer<br>hydrogen atoms from certain<br>molecules to oxygen, producing<br>hydrogen peroxide (H <sub>2</sub> O <sub>2</sub> ) as a<br>by-product; H <sub>2</sub> O <sub>2</sub> is converted to<br>water by another enzyme |



