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Photosynthesis

The Process That Feeds the Biosphere

 Photosynthesis is the process that converts solar 
energy into chemical energy

 Directly or indirectly, photosynthesis nourishes 
almost the entire living world
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 Autotrophs sustain themselves without eating 
anything derived from other organisms

 Autotrophs are the producers of the biosphere, 
producing organic molecules from CO2 and other 
inorganic molecules

 Almost all plants are photoautotrophs, using the 
energy of sunlight to make organic molecules
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Figure 8.1
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 Heterotrophs obtain their organic material from 
other organisms

 Heterotrophs are the consumers of the biosphere

 Almost all heterotrophs, including humans, depend 
on photoautotrophs for food and O2
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 Photosynthesis occurs in plants, algae, certain other 
protists, and some prokaryotes

 These organisms feed not only themselves but also 
most of the living world

© 2016 Pearson Education, Inc.



3

Figure 8.2
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Figure 8.2-3
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Concept 8.1: Photosynthesis converts light energy to 
the chemical energy of food

 The structural organization of photosynthetic cells 
includes enzymes and other molecules grouped 
together in a membrane

 This organization allows for the chemical reactions 
of photosynthesis to proceed efficiently

 Chloroplasts are structurally similar to and likely 
evolved from photosynthetic bacteria 
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Chloroplasts: The Sites of Photosynthesis in Plants

 Leaves are the major locations of photosynthesis

 Their green color is from chlorophyll, the green 
pigment within chloroplasts

 Chloroplasts are found mainly in cells of the 
mesophyll, the interior tissue of the leaf

 Each mesophyll cell contains 30–40 chloroplasts
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 CO2 enters and O2 exits the leaf through 
microscopic pores called stomata

 The chlorophyll is in the membranes of thylakoids 
(connected sacs in the chloroplast); thylakoids may 
be stacked in columns called grana

 Chloroplasts also contain stroma, a dense interior 
fluid 
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Figure 8.3
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Figure 8.3-3
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Tracking Atoms Through Photosynthesis: 
Scientific Inquiry

 Photosynthesis is a complex series of reactions that 
can be summarized as the following equation

6 CO2 + 12H2O + Light energy  C6H12O6 + 6 O2 + 6 H2O
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The Splitting of Water

 Chloroplasts split H2O into hydrogen and oxygen, 
incorporating the electrons of hydrogen into sugar 
molecules and releasing oxygen as a by-product
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Figure 8.4
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Reactants: 6 CO2 12 H2O

Products: C6H12O6 6 H2O 6 O2
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Photosynthesis as a Redox Process

 Photosynthesis reverses the direction of electron 
flow compared to respiration

 Photosynthesis is a redox process in which H2O is 
oxidized and CO2 is reduced

 Photosynthesis is an endergonic process; the 
energy boost is provided by light
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Figure 8.UN01
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The Two Stages of Photosynthesis: A Preview

 Photosynthesis consists of the light reactions (the 
photo part) and Calvin cycle (the synthesis part)

 The light reactions (in the thylakoids)

 Split H2O

 Release O2

 Reduce the electron acceptor, NADP+, to NADPH

 Generate ATP from ADP by adding a phosphate 
group, photophosphorylation
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 The Calvin cycle (in the stroma) forms sugar from 
CO2, using ATP and NADPH

 The Calvin cycle begins with carbon fixation, 
incorporating CO2 into organic molecules
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Animation: Photosynthesis
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Figure 8.5-s1
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Figure 8.5-s2
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Concept 8.2: The light reactions convert solar energy 
to the chemical energy of ATP and NADPH

 Chloroplasts are solar-powered chemical factories

 Their thylakoids transform light energy into the 
chemical energy of ATP and NADPH
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The Nature of Sunlight

 Light is a form of electromagnetic energy, also 
called electromagnetic radiation

 Like other electromagnetic energy, light travels in 
rhythmic waves

 Wavelength is the distance between crests of 
waves

 Wavelength determines the type of electromagnetic 
energy
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 The electromagnetic spectrum is the entire range 
of electromagnetic energy, or radiation 

 Visible light consists of wavelengths (including 
those that drive photosynthesis) that produce colors 
we can see

 Light also behaves as though it consists of discrete 
particles, called photons
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Figure 8.6
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Photosynthetic Pigments: The Light Receptors

 Pigments are substances that absorb visible light

 Different pigments absorb different wavelengths

 Wavelengths that are not absorbed are reflected or 
transmitted

 Leaves appear green because chlorophyll reflects 
and transmits green light
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Animation: Light and Pigments
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Figure 8.7
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 A spectrophotometer measures a pigment’s ability 
to absorb various wavelengths 

 This machine sends light through pigments and 
measures the fraction of light transmitted at each 
wavelength
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Figure 8.8
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 An absorption spectrum is a graph that plots a 
pigment’s light absorption versus wavelength

 The absorption spectrum of chlorophyll a suggests 
that violet-blue and red light work best for 
photosynthesis

 Accessory pigments include chlorophyll b and a 
group of pigments called carotenoids
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Figure 8.9-1
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 An action spectrum profiles the relative 
effectiveness of different wavelengths of radiation in 
driving a process
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Figure 8.9-2
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 The action spectrum of photosynthesis was first 
demonstrated in 1883 by Theodor W. Engelmann

 In his experiment, he exposed different segments of 
a filamentous alga to different wavelengths

 Areas receiving wavelengths favorable to 
photosynthesis produced excess O2

 He used the growth of aerobic bacteria clustered 
along the alga as a measure of O2 production
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Figure 8.9-3
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(c) Engelmann’s experiment

 Chlorophyll a is the main photosynthetic pigment

 Accessory pigments, such as chlorophyll b, broaden 
the spectrum used for photosynthesis

 A slight structural difference between chlorophyll a 
and chlorophyll b causes them to absorb slightly 
different wavelengths

 Accessory pigments called carotenoids absorb 
excessive light that would damage chlorophyll
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Video: Chlorophyll Model
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Figure 8.10
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Excitation of Chlorophyll by Light

 When a pigment absorbs light, it goes from a 
ground state to an excited state, which is unstable

 When excited electrons fall back to the ground 
state, photons are given off, an afterglow called 
fluorescence

 If illuminated, an isolated solution of chlorophyll will 
fluoresce, giving off light and heat
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Figure 8.11
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(b) Fluorescence

A Photosystem: A Reaction-Center Complex 
Associated with Light-Harvesting Complexes

 A photosystem consists of a reaction-center 
complex (a type of protein complex) surrounded by 
light-harvesting complexes

 The light-harvesting complexes (pigment 
molecules bound to proteins) transfer the energy of 
photons to the reaction center

© 2016 Pearson Education, Inc.
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 A primary electron acceptor in the reaction center 
accepts excited electrons and is reduced as a result

 Solar-powered transfer of an electron from a 
chlorophyll a molecule to the primary electron 
acceptor is the first step of the light reactions

© 2016 Pearson Education, Inc.

Figure 8.12
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Figure 8.12-2
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 There are two types of photosystems in the 
thylakoid membrane

 Photosystem II (PS II) functions first (the numbers 
reflect order of discovery) and is best at absorbing a 
wavelength of 680 nm

 The reaction-center chlorophyll a of PS II is called 
P680
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 Photosystem I (PS I) is best at absorbing a 
wavelength of 700 nm

 The reaction-center chlorophyll a of PS I is called 
P700

 P680 and P700 are nearly identical, but their 
association with different proteins results in different 
light-absorbing properties

© 2016 Pearson Education, Inc.
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Linear Electron Flow

 Linear electron flow involves the flow of electrons 
through the photosystems and other molecules 
embedded in the thylakoid membrane to produce 
ATP and NADPH using light energy
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 Linear electron flow can be broken down into a 
series of steps

1. A photon hits a pigment and its energy is passed 
among pigment molecules until it excites P680

2. An excited electron from P680 is transferred to the 
primary electron acceptor (we now call it P680+)

3. H2O is split by enzymes, and the electrons are 
transferred from the hydrogen atoms to P680+, thus 
reducing it to P680; O2 is released as a by-product 
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4. Each electron “falls” down an electron transport 
chain from the primary electron acceptor of PS II 
to PS I

5. Energy released by the fall drives the creation of a 
proton gradient across the thylakoid membrane; 
diffusion of H+ (protons) across the membrane 
drives ATP synthesis

© 2016 Pearson Education, Inc.
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6. In PS I (like PS II), transferred light energy excites 
P700, causing it to lose an electron to an electron 
acceptor (we now call it P700+)

 P700+ accepts an electron passed down from PS II via 
the electron transport chain
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7. Excited electrons “fall” down an electron transport 
chain from the primary electron acceptor of PS I to 
the protein ferredoxin (Fd)

8. The electrons are transferred to NADP+, reducing it 
to NADPH, and become available for the reactions 
of the Calvin cycle

 This process also removes an H+ from the stroma
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Figure 8.UN02
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Figure 8.13-s1
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Figure 8.13-s4
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 The energy changes of electrons during linear flow 
can be represented in a mechanical analogy
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Figure 8.14
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A Comparison of Chemiosmosis in Chloroplasts and 
Mitochondria

 Chloroplasts and mitochondria generate ATP by 
chemiosmosis but use different sources of energy

 Mitochondria transfer chemical energy from food to 
ATP; chloroplasts transform light energy into the 
chemical energy of ATP
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 Spatial organization of chemiosmosis differs 
between chloroplasts and mitochondria but there 
are also similarities

 Both use the energy generated by an electron 
transport chain to pump protons (H+) across a 
membrane against their concentration gradient

 Both rely on the diffusion of protons through ATP 
synthase to drive the synthesis of ATP

© 2016 Pearson Education, Inc.
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 In mitochondria, protons are pumped to the 
intermembrane space and drive ATP synthesis as 
they diffuse back into the mitochondrial matrix

 In chloroplasts, protons are pumped into the 
thylakoid space and drive ATP synthesis as they 
diffuse back into the stroma
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Figure 8.15
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 The light reactions of photosynthesis generate ATP 
and increase the potential energy of electrons by 
moving them from H2O to NADPH

 ATP and NADPH are produced on the side of the 
thylakoid membrane facing the stroma, where the 
Calvin cycle takes place

 The Calvin cycle uses ATP and NADPH to power 
the synthesis of sugar from CO2
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Figure 8.UN02
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Figure 8.16-1
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Concept 8.3: The Calvin cycle uses the chemical 
energy of ATP and NADPH to reduce CO2 to sugar

 The Calvin cycle, like the citric acid cycle, 
regenerates its starting material after molecules 
enter and leave the cycle

 Unlike the citric acid cycle, the Calvin cycle is 
anabolic

 It builds sugar from smaller molecules by using ATP 
and the reducing power of electrons carried by 
NADPH

© 2016 Pearson Education, Inc.



29

 Carbon enters the cycle as CO2 and leaves as a 
sugar named glyceraldehyde 3-phospate (G3P)

 For net synthesis of one G3P, the cycle must take 
place three times, fixing three molecules of CO2

 The Calvin cycle has three phases

 Carbon fixation 

 Reduction

 Regeneration of the CO2 acceptor
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Figure 8.UN03

© 2016 Pearson Education, Inc.

H2O

Light

NADP
+

ADP

CO2

LIGHT
REACTIONS

ATP

NADPH

CALVIN
CYCLE

O2 [CH2O] (sugar)

 Phase 1, carbon fixation, involves the 
incorporation of the CO2 molecules into ribulose
bisphosphate (RuBP) using the enzyme rubisco

 The product is 3-phosphoglycerate
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Figure 8.17-s1
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 Phase 2, reduction, involves the reduction and 
phosphorylation of 3-phosphoglycerate to G3P

 Six ATP and six NADPH are required to produce six 
molecules of G3P, but only one exits the cycle for 
use by the cell
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Figure 8.17-s2
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 Phase 3, regeneration, involves the rearrangement 
of the five remaining molecules of G3P to 
regenerate the initial CO2 receptor, RuBP

 Three additional ATP are required to power this 
step 
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Figure 8.17-s3
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Evolution of Alternative Mechanisms of Carbon 
Fixation in Hot, Arid Climates

 Adaptation to dehydration is a problem for land 
plants, sometimes requiring trade-offs with other 
metabolic processes, especially photosynthesis

 On hot, dry days, plants close stomata, which 
conserves H2O but also limits photosynthesis

 The closing of stomata reduces access to CO2 and 
causes O2 to build up

 These conditions favor an apparently wasteful 
process called photorespiration
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 In most plants (C3 plants), initial fixation of CO2, 
via rubisco, forms a three-carbon compound (3-
phosphoglycerate)

 In photorespiration, rubisco adds O2 instead of 
CO2 in the Calvin cycle, producing a two-carbon 
compound

 Photorespiration decreases photosynthetic output 
by consuming ATP, O2, and organic fuel and 
releasing CO2 without producing any ATP or sugar
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 Photorespiration may be an evolutionary relic 
because rubisco first evolved at a time when the 
atmosphere had far less O2 and more CO2

 Photorespiration limits damaging products of light 
reactions that build up in the absence of the Calvin 
cycle
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C4 Plants

 C4 plants minimize the cost of photorespiration by 
incorporating CO2 into a four-carbon compound

 An enzyme in the mesophyll cells has a high affinity 
for CO2 and can fix carbon even when CO2

concentrations are low

 These four-carbon compounds are exported to 
bundle-sheath cells, where they release CO2 that is 
then used in the Calvin cycle
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Figure 8.18a
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Sugarcane

CAM Plants

 Some plants, including pineapples and many cacti 
and succulents, use crassulacean acid 
metabolism (CAM) to fix carbon

 CAM plants open their stomata at night, 
incorporating CO2 into organic acids

 Stomata close during the day, and CO2 is released 
from organic acids and used in the Calvin cycle
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Figure 8.18b
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Pineapple

 The C4 and CAM pathways are similar in that they 
both incorporate carbon dioxide into organic 
intermediates before entering the Calvin cycle

 In C4 plants, carbon fixation and the Calvin cycle 
occur in different cells 

 In CAM plants, these processes occur in the same 
cells, but at different times of the day
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Figure 8.18
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The Importance of Photosynthesis: A Review

 The energy entering chloroplasts as sunlight gets 
stored as chemical energy in organic compounds

 Sugar made in the chloroplasts supplies chemical 
energy and carbon skeletons to synthesize the 
organic molecules of cells

 Plants store excess sugar as starch in the 
chloroplasts and in structures such as roots, tubers, 
seeds, and fruits

 In addition to food production, photosynthesis 
produces the O2 in our atmosphere
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Figure 8.19-1
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LIGHT REACTIONS

• Are carried out by molecules
in the thylakoid membranes

• Convert light energy to the chemical
energy of ATP and NADPH

• Split H2O and release O2

CALVIN CYCLE REACTIONS

• Take place in the stroma

• Use ATP and NADPH to convert
CO2 to the sugar G3P

• Return ADP, inorganic phosphate,
and NADP+ to the light reactions

 Photosynthesis is one of many important processes 
conducted by a working plant cell
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Figure 8.20
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Figure 8.20-3
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Figure 8.UN05
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Figure 8.UN08
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