Lewis Dot Structures

1. Methane $-\mathrm{CH}_{4}$

Number of Valence Electrons: 4 from C and 1 each from $4 \mathrm{H}=8$
Carbon is more electronegative than hydrogen, but hydrogen can never be the "central" atom, as it can only form 1 bond. Carbon always forms 4 bonds (2 electrons each).

2. Ammonia - NH_{3}

Number of Valence Electrons: 5 from N and 1 from each of the $\mathrm{H}=8$

The bonds account for 6 of the valence electrons, the 2 left over electrons are the lone pair of electrons on N .
3. Ethylene $-\mathrm{C}_{2} \mathrm{H}_{4}$

Number of valence electrons: 4 of each carbon (8 total) and 1 each from $4 \mathrm{H}=12$

The single bonds account for 10 valence electrons. A double bond between the 2 carbon atoms is used to complete the octet rule for carbon and use all available valence electrons (12).
4. Ammonia ion $-\mathrm{NH}_{4}^{+}$

Number of Valence Electrons: 5 from N and 1 from each of the H less one from the $\mathbf{+ 1}$ charge ($\mathbf{1}$ lost electron) $=8$

5. Formaldehyde $-\mathrm{CH}_{2} \mathrm{O}$

Number of Valence Electrons: 4 from C, 1 each from 2 H, 6 from O $=12$

Carbon is central atom, as it is less electronegative than oxygen. The single bonds account for 6 valence electrons. Two additional valence electrons go into the second (double) bond between carbon and oxygen. The last 4 electrons go on the oxygen as 2 lone pairs. Both carbon and oxygen obey the octet rule in this structure.
6. Nitrite ion $-\mathrm{NO}_{2}{ }^{-}$

Number of Valence Electrons: 5 from N, 6 from each of the two oxygens (12 total), $\mathbf{1}$ additional electron from the -1 charge (gained electron) $=18$

The number of valence electrons in the bonds is 6 . One lone pair electrons on $N(2$ total); 2 lone pairs of electrons (4 total) on one $0 ; 3$ lone pairs of electrons (6 total) on the other O .

With one double bond to oxygen and one single bond to oxygen, this structure for nitrite ion exhibits resonance. The actual structure is an average of the 2 resonance structures. The bond length of the nitrogen-oxygen bonds is identical, indicating that the double bond character of both bonds is the same.
7. Boron trichloride $-\mathrm{BCl}_{3}$

Number of Valence Electrons: 3 from B and 7 each Cl (21 total) $=24$

This is an example of an exception to the octet rule. Boron likes to form 3 bonds. Similarly, Be likes to form only 2 bonds ($\mathrm{BeF}_{2}, \mathrm{BeCl}_{2}$).
8. Sulfur Hexafluoride $-\mathrm{SF}_{6}$

Number of Valence Electrons: 6 from S and 7 each F (42 total) $=48$

This is an example of an exception to the octet rule. Because S is in the $3^{\text {rd }}$ row of the periodic table, it can form an expanded valence shell in order to create the required 6 bonds.

