Exam review Part 5 Plate Tectonics, Rocks, Earthquakes & Volcanoes

Earth's layers

- 1.Crust- 2 types Ocean, Continental, Boundary between the crust and the mantle= Moho =seismic waves change speed
- 2. Mantle thickest layer, crustal plates move due to convection currents in this layer
- Outer Core- believed to be liquid iron Secondary seismic waves will not penetrate which determines the boundary between the mantle and the outer core
- 4. Inner Core- Primary seismic waves are bent as they travel through- which determines the boundary between the outer and inner core Believed to be radioactive- giving off the heat that creates the convection currents in the mantle that leads to crustal movement

S waves can not penetrate the outer core

P waves are bent as they travel through

Heat from the core causes Convection Currents

Alfred Wegener Named the super continent

Seismic Activity around the Ring of Fire due to Plate Tectonics

Why is there a concentration of earthquakes and volcanoes in this region?

Boundary	Type of Plate	Geologic Event	Resulting	Modern
	Boundary		Features	Examples
Convergent	Continent	Crust		
	То	is folded, bent	Mountains	Himalayas
	Continent	Mountain		
		Building		
	Continent	Subduction =	Mountains,	Andes
	То	Friction, melting-	Ocean Trenches	
	Ocean	Volcanism		
	Ocean	Subduction =	Island Arcs,	Western Aleutians
	То	Friction, melting	Ocean Trenches	
	Ocean	Volcanism		
Divergent	Continent splits	Crust fractures		
		Magma rises at	Rift Valleys	East African
		Rift,		Rift
		Volcanism		
	Oceans splits	Seafloor		
		Spreading,	Mid Ocean Ridge	Mid Atlantic
		Volcanism		Ridge
Transformed	Continent	Crust is	Crust Deformed	
	sliding past	Deformed, bent,	Along the fault,	San Andreas
	Continent	folded	buckling	Fault
	Ocean			
	sliding past	Earthquakes	Offset Oceanic	East Pacific
	Ocean	Possible Tsunami	Ridges,	Rise

Where did the water come from? (Comets and outgassing)

Ways to map ocean floor: Ropes Sonar Side scan Multibeam Satellites

Continental Margins for active & passive coasts

Types of Seismic Waves

PRIMARY / P / Push and Pull, fastest, travels through solids and liquids SECONDARY / S / Side to Side, most destructive, travels through solids only SURFACE / L / Long

Other ways to learn about the Earth's interior

Drilling or Volcanoes

Terms to know: Isostasy Geothermal gradient

	Shield Volcano	Cinder Cone Volcano	Composite Volcano
Shape/Size	10 km high, 100 km wide DOME SHAPED	500 m high, 500 m wide, STEEP SLOPES	1,000-4,000 m high, 1,000-4,000 m wide TALL- USUALLY WITH SNOW
Composition	Mafic	Mafic	Felsic
Rock Type	Basalt	Scoria / Andesite	Andesite, Rhyolite
Eruption Type	Hawaiian	Strombolian	Plinian
Viscosity	Yes "low"	Yes "medium"	Yes "High"
Name of Volcanoes	Kilauea, Mauna Loa, Hawaii Medicine Lake, CA	Paricutin	Mount St. Helens, WA Mount Shasta Mount Lassen, CA Many around the <mark>Ring of fire</mark>

How to predict a volcano:

1.increase in earthquakes/ tremors,
2.uplift / budging,
3.gas/ ash emissions
4.there is a change in the amount of CO2 in the surrounding air, or
5.nearby bodies of water are warmer than normal.

Benefits of a volcano? (4) New land Part of the rock cycle Enriched soil **Renews** mineral resources

Fatalities Due to?

Toxic Gasses Pyroclastic Flows Lahars Ash Accumulation Lava Flows/Volcanic Bombs

Effects of Earthquakes? (6-7)Tsunami Landslides buildings collapse/ Pipes Break Fires Liquefaction Land Movement

Triangulation: 3 or more recording stations are needed to locate the epicenter of an earthquake

New Madrid Fault Line

1.Igneous- from molten material Intrusive(granite, gabbro) or extrusive(pumice, obsidian, scoria) **2. Sedimentary** – made from particles/ sediment "glued" together Clastic-pieces of rocky material – (sandstone, conglomerate, breccia) Chemical-shell of marine animals or evaporates (limestone, rock salt) **3.** Metamorphic – rocks changed due to heat and pressure Foliated- (Gneiss, Schist, Slate) Non foliated – (Marble, Quartzite)

Everything we own or hope to buy in the future comes from the earth in some form or fashion Geology-how the earth works affects us every day – remember Geologic Hazards Go out and kiss a rock today and say "Thank You"