\qquad

3.6 Rational Functions

1. A \qquad is a function whose rule is the quotient of two polynomials, such as
2. \qquad have both numerator and denominators with first-degree or constant polynomials.
3. Characteristics of a Rational Function:
a. Parent function: \qquad .
b. The graph is called a \qquad .
c. \qquad describes the behavior of a graph as x or y approaches infinity. There are two types of asymptotes \qquad and \qquad .

- The \qquad has an equation that starts with $\mathrm{x}=$ since this is a vertical line.
- The \qquad has an equation $\mathrm{y}=$ since this is a horizontal line
d. To find the vertical asymptotes \qquad .
e. In order to determine the horizontal asymptote we need to look at the n and m.
- If \qquad then the equation of the horizontal asymptote is \qquad .
- If ___ then the equation of the horizontal asymptote is \qquad .
- If \qquad then there is no horizontal asymptote. There is an oblique asymptote: You find the oblique asymptotes by using long division.
f. To find the \qquad , set the numerator \qquad .
g. To find the \qquad , replace \qquad with \qquad then simplify.

4. Graphing a Rational Function

a. Factor both the \qquad and \qquad .
b. Find the \qquad
c. Find the \qquad .
d. Find the \qquad .
e. Find the \qquad
f. Graph the asymptotes using dashed lines
g. Plot the x - and y -intercepts.
h. Find two other points on the line using your graphing calculator or make a table.

Class Examples:

1. Graph $f(x)=\frac{3 x+2}{2 x+4}$
a. Vertical Asymptote: \qquad
b. Horizontal Asymptote:
c. X-intercept: \qquad
d. Y-intercept: \qquad
e. Table:
2. Graph: $f(x)=\frac{2 x^{2}}{x^{2}-4}$
a. Vertical Asymptote: \qquad
b. Horizontal Asymptote: \qquad
c. X-intercept: \qquad
d. Y-intercept: \qquad
e. Table:

