Houston Community College System Chemistry 1411

EXAM \# 3A Sample

Name: \qquad
Score:

Directions- please answer the following multiple-choice questions next to each number. Please show all your work for bonus question and part(2) questions in the space provided.

Part (1)-Multiple Choice - (3 points each)

\qquad 1. How many unpaired electrons are in the Lewis dot symbol of a chlorine atom?
A. 7
B. 3
C. 5
D. 1
E. 8
\qquad 2. Which of the following molecules consider to be a polar molecule?
A. $\mathbf{N H}_{3}$
B. $\mathbf{B F}_{3}$
C. CO_{2}
D. $\mathrm{C}_{2} \mathrm{H}_{2}$
E. CCl_{4}
\qquad 3. Determine the total number of sigma and pi bonds in the following molecular structure.

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{~N}:
$$

A. $7 \pi, 10 \pi$
B. $7 \sigma, 10 \pi$
C. $10 \sigma, 7 \pi$
D. $12 \sigma, 5 \pi$
E. none of these
\qquad 4. Which one has the largest radius?
A. K^{+}
B. K
C. Al^{3+}
D. $\mathbf{N a}^{+}$
E. $\mathbf{M g}$
\qquad 5. Which one is isoelectronic with Neon?
A. \mathbf{F}^{-}
B. $\mathbf{A l}^{3+}$
C. Na^{+}
D. O^{2-}
E. all of these
\qquad 6. Which one violates octet rule stability?
A. S^{2-}
B. $\mathbf{M g}^{+}$
C. O^{2-}
D. Fr^{+}
E. $\mathbf{A l}^{3+}$
\qquad 7. Which one of the following forms an ionic bond with Chlorine gas?
A. C
B. Mg
C. P
D. As
E. S
\qquad 8. The configuration $(\sigma 2 s)^{2}\left(\sigma 2 s^{*}\right)^{2}\left(\pi 2 p_{x}\right)^{1}\left(\pi 2 p_{y}\right)^{1}$ is the molecular orbital description for the ground state of
A. $\mathbf{L i}_{2}{ }^{+}$
B. Be_{2}
C. B_{2}
D. B^{2-}
E. C_{2}
\qquad 9. Which of the following molecules is exception to octet rule.
A. $\mathbf{P C l}_{5}$
B. COCl_{2}
C. BCl_{3}
D. CCl_{4}
E. two of these
10. Which of the following is the electron configuration for the $\mathbf{C r}^{3+}$?
A. $[A r] 4 s^{2} 3 d^{4}$
B. $[\mathrm{Ar}] \mathbf{4 s}^{\mathbf{1}} \mathbf{3 d}^{\mathbf{5}}$
C. $[\mathrm{Ar}] 3 \mathrm{~d}^{3}$
D. $[\mathrm{Ar}] \mathbf{4 s}^{\mathbf{2}} \mathbf{3 d}{ }^{\mathbf{1}}$
E. none of these
11. As the bond order of a bond increases, the bond energy \qquad and the bond length \qquad .
A. increase, increase
B. decrease, decrease
C. increase, decrease
D. decrease, increase
E. More information is needed to answer this question
\qquad 12. How many valence electron are in $\mathrm{SO}_{4}{ }^{2-}$ ion?
A. $32 \mathrm{e}^{-}$
B. $30 \mathrm{e}^{-}$
C. $14 \mathrm{e}^{-}$
D 28e ${ }^{-}$
E. $24 \mathrm{e}^{-}$
\qquad 13. Arrange the following atoms in order of increasing atomic radius: $\mathrm{N}, \mathrm{K}, \mathrm{As}, \mathrm{Fr}$
A. $\mathbf{N}<\mathrm{K}<\mathbf{A s}<\mathbf{F r}$
B. $\mathbf{N}<\mathbf{A s}<\mathbf{K}<\mathbf{F r}$
C. $\mathbf{A s}<\mathbf{K}<\mathbf{N}<\mathbf{F r}$
D. $\mathbf{F r}<\mathbf{K}<\mathbf{A s}<\mathbf{N}$
E. $\mathbf{K}<\mathbf{F r}<\mathbf{N}<\mathbf{A s}$
14. What are the hybridization and the approximate bond angle CS_{2} (C is the central atom) ?
A. $\mathbf{s p}^{\mathbf{2}}, \mathbf{1 0 7}^{\mathbf{0}}$
B. $\mathbf{s p}^{\mathbf{3}}, \mathbf{1 2 0}^{\mathbf{0}}$
C. $\mathbf{s p}^{\mathbf{2}}, \mathbf{1 2 0}^{\mathbf{0}}$
D. $\mathrm{sp}, 180^{0}$
E. sp, 120
15. The electron-pair geometry and molecular geometry of boron trichloride are respectively
A. tetrahedral,tetrahedral
B. tetrahedral, trigonal planar
C. trigonal planar, trigonal planar
D. tetrahedral, trigonal pyramidal
E. tetrahedral, trigonal bipyramidal
16. Which of the following has bond order of 3 ?
I. \mathbf{N}_{2}
II. CN^{-}
III) $\mathrm{O}_{2} \quad$ IV) $\mathrm{C}_{2}{ }^{2-}$
A. I and II
B. I only
C. I,II, and IV
D. II and III
E. none of these
\qquad 17. Which of the following groups contains no ionic compounds?
A. $\mathrm{HCN}, \mathrm{NO}_{2}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{PCl}_{5}, \mathrm{LiBr}, \mathrm{Zn}(\mathrm{OH})_{2}$
C. $\mathbf{N a H}, \mathrm{CCl}_{4}, \mathrm{SF}_{4}$
D. $\mathrm{KOH}, \mathrm{CaF}_{\mathbf{2}}, \mathrm{NaNH}_{2}$
E. $\mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}$
\qquad 18. Which one of the following cubic cell contains only one atom?
A. Simple cubic cell
B. Face centered cubic cell
C. Body centered cubic cell
D. Edge Cubic cell
E. none of these
19. Which of the following is not a valid resonance structure for $\mathbf{N}_{\mathbf{3}^{-}}$?

A. I only
B. II only
C. I and II
D. II and IV
E. all are correct
20. Which of the species below would you expect to show the least hydrogen bonding?
A. $\mathbf{N H}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. HF
D. CH_{4}
E. all the same
21. Calculate the enthalpy change, ΔH, for the following gasphase reaction using bond energy data.

Dissociation energy

H	H				H	H-Cl	435KJ/mol
	/			\|	-	C-H	$413 \mathrm{KJ} / \mathrm{mol}$
		+ $\mathrm{H}-\mathrm{Cl}$	\rightarrow	H-C	- C-H	C-C	$348 \mathrm{KJ} / \mathrm{mol}$
/	1					$\mathrm{C}=\mathrm{C}$	$614 \mathrm{KJ} / \mathrm{mol}$
H	H				Cl	C-Cl	$328 \mathrm{KJ} / \mathrm{mol}$

22. Draw Lewis dot (electron) structure for $\mathrm{SO}_{3}{ }^{2-}$ and determine
a) electron geometry
b) molecular geometry
c) hybridization
d) bond angle
23. Given $\mathbf{N}_{2}{ }^{2-}$, using molecular orbital and valence bond theory ;
a) Write molecular orbital configurations
b) Determine BOND ORDER and indicate stability
c) Identify the MAGNETIC properties (paramagnetic or diamagnetic)
24. Chromium metal crystallizes as body-centered lattice. If the atomic radius of $\mathbf{C r}$ is 1.25 angstrums, what is the density of Cr metal in $\mathrm{g} / \mathrm{cm}^{3} ?\left(1 \mathrm{~A}^{0}=1.0 \times 10^{-8} \mathrm{~cm}, 1 \mathrm{~g}=6.02 \times 10^{23}\right.$ a.m.u. $)$
(For bec, $L=4 r / \sqrt{3}$)
25. Define the followings;
a) Triple point-
b) Sublimation-
c) Avogadro's law -
d) Bond order-
e) Critical temperature and Pressure--

BONUS question-Show all your work.(10 points)
You are given a small bar of an unknown metal , X. You find the density of the metal to be $10.5 \mathrm{~g} / \mathrm{cm}^{3}$. An X-ray differaction experiment measures the edge of the unit cell as 409 pm . Assuming that the metal crystallizes in a face-centered lattice, what is metal , X, most likely to be?

CHEM 1411 EXAM \# 3A (KEY)

1. D
2. B
3. C
4. C
5. A
6. B
7. A
8. E
9. C
10. C
11. B
12. A
13. D
14. A
15. B
16. E
17. C
18. D
19. $\Delta \mathrm{H}=[614+435]-[328+348+413]=-40 \mathrm{KJ}$
20. $\mathrm{SO}_{3}{ }^{2-}=6 \mathrm{e}^{-}+3\left(6 \mathrm{e}^{-}\right)+2 \mathrm{e}^{-}=26 \mathrm{e}^{-}=13$ p. e^{-}

$$
\left[\right]^{2-} \quad \begin{aligned}
& \text { a) tetrahedral } \\
& \text { b) triagonal pyramidal } \\
& \text { c) } \mathrm{sp}^{3} \\
& \text { d) } 107^{\circ}
\end{aligned}
$$

23. $\mathrm{N}_{2}{ }^{2-}=16 \mathrm{e}^{-}=\left(\sigma_{1 \mathrm{~s}}\right)^{2}\left(\sigma_{1 \mathrm{~s}}{ }^{*}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2}\left(\pi_{2 \mathrm{py}}\right)^{2}\left(\pi_{2 \mathrm{pz}}\right)^{2}\left(\sigma_{2 \mathrm{px}}\right)^{2}\left(\pi_{2 \mathrm{py}}{ }^{*}\right)^{1}\left(\pi_{2 \mathrm{pz}}{ }^{*}\right)^{1} \rightarrow[: \mathrm{N}=\mathrm{N}:]^{2-}$

10-6
B.O. $=---------=2$; paramagnetic
24. Cr atome $=8(1 / 8)+1(1)=2$ atoms
$\operatorname{mass}(\mathrm{g} \mathrm{Cr})=(2)(51.996 \mathrm{amu})\left(1 \mathrm{~g} / 6.022 \times 10^{23} \mathrm{amu}\right)=1.73 \times 10^{-22} \mathrm{~g}$
volume $\left(\mathrm{cm}^{3}\right)=\mathrm{L}^{3}=(4 \mathrm{r} / \sqrt{\mathbf{3}})^{3}=\left(4 \times 1.25 \times 10^{-8} \mathrm{~cm} / \sqrt{\mathbf{3}}\right)^{3}=\left(4 \times 1.25 \times 10^{-8} \mathrm{~cm} / 1.73\right)^{3}$ $=2.41 \times 10^{-23} \mathrm{~cm}^{3}$
$\mathrm{D}=(\mathrm{m} / \mathrm{v})=\left(1.73 \times 10^{-22} \mathrm{~g} / 2.41 \times 10^{-23} \mathrm{~cm}^{3}\right)=\mathbf{7 . 1 8} \mathbf{g} / \mathrm{cm}^{3}$
25. a) Triple point: is the point where solid, liquid, and gas are all at equilibrium.
b) Sublimation : process by which solid changes to gas.
c) Avogadro's Law : 1 mole of any gas at S.T.P. condition has the volume of 22.4 liter (22400 ml).
d) Bond order : determines the number of bonds between two atoms.
e) Criptical points- The liquid -vapor line terminates at the critical point. At the critical temperature, a liquid has a vapor pressureequal to its critical pressure. Above the critical temperature a liquid phase cannot be formed.; the single phase that exists is called supercritical fluid.

BONUS

Number of X atoms $=8(1 / 8)+6(1 / 2)=4$ atoms of X
$\mathrm{L}=(409 \mathrm{pm}) \times 10^{-12} \mathrm{mx} 10^{2} \mathrm{~cm}=4.09 \times 10-8 \mathrm{~cm} \rightarrow \mathrm{~V}=\mathrm{L}^{3}=\left(4.09 \times 10^{-8} \mathrm{~cm}\right)^{3}=6.84 \times 10^{-23} \mathrm{~cm}^{3}$
$\mathrm{m}=$ d.v $=\left(10.5 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(6.84 \times 10^{-23} \mathrm{~cm}^{3}\right)=7.18 \times 10^{-22} \mathrm{~g}$
$\left(7.18 \times 10^{-22} \mathrm{~g}\right)\left(6.022 \times 10^{23} \mathrm{amu} / 1 \mathrm{~g}\right)=432 \mathrm{~g} \mathrm{amu}$
$432 \mathrm{amu} / 4$ atoms of $\mathrm{X}=108 \mathrm{amu} /$ atom \rightarrow Silver atom, Ag

Houston Community College System
 Chemistry 1411

EXAM \# 3B Sample

Name: \qquad
(8,9,10, and 11)
Score: \square

Directions- please answer the following multiple-choice questions next to each number. Please

 show all your work for bonus question and part (2) questions in the space provided.
Part (1)-Multiple Choice - (3 points each)

\qquad 1.Which molecule contains one unshared pair of valence electrons?
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) NH_{3}
(C) CH_{4}
(D) NaCl
(E) CO_{2}
\qquad 2. In the Lewis structure of SF_{2}, there are \qquad single bonds and \qquad total lone pairs?
(A) 2,8
(B) 3,8
(C) 2,2
(D) 2,6
(E) 3,6
\qquad 3. Which of the following molecules violates the octet rule?
(A) CBr_{4}
(B) NF_{3}
(C) OF_{2}
(D) PCl_{3}
(E) AsF_{5}
\qquad 4. Which molecule exhibits resonance?
(A) O_{3}
(B) BeCl_{2}
(C) CO_{2}
(D) $\mathrm{H}_{2} \mathrm{Se}$
(E) NF_{3}
\qquad 5. Examine the following phase diagram and identify the feature represented by point A .

Temperature
(A) melting point
(B)critical point
(C) triple point
(D) sublimation point
\qquad 6. For which of the following molecules is the electron domain geometry the same as the molecular geometry of the molecule?
(A). O_{3}
(B). IF_{5}
(C) NH_{3}
(D) $\mathrm{SO}_{4}{ }^{2-}$
\qquad 7. What are the formal charges on the boron and nitrogen in the compound $\mathrm{BF}_{3}-\mathrm{NH}_{3}$?
(A) -2 and +2
(B) +2 and -2
(C) 0 and 0
(D) +1 and -1
(E) -1 and +1
\qquad 8. Which would be expected to be the most electronegative?
(A) P
(B) As
(C) Si
(D) Al
\qquad 9. According to modern bonding theory the number of sigma (σ) and pi (π) bonds in the ethylene molecule $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ is
(A) 1σ and 4π
(B) 1π and 5σ
(C) 1σ and 5π
(D) 2π and 4σ
(E) 1π and 4σ
10. The element with the greatest tendency to gain electrons is
(A) F
(B) At
(C) O
(D) N
(E) Bi
\qquad 11. What are the hybridization and angle of NF_{3} ?
(A) $\mathrm{sp}, 120^{0}$
(B) $\mathrm{sp}^{3}, 109{ }^{0}$
(C) $\mathrm{sp}^{2}, 120^{0}$
(D) $\mathrm{sp}^{3}, 107^{0}$
\qquad 12. The strongest intermolecular interactions between ethyl alcohol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ molecules arise from
(A) dipole-dipole forces
(B)London dispersion forces
(C)hydrogen bonding
(D) covalent bonding
\qquad 13. Which of the following compounds contains the LEAST polar bonds?

Atoms	H	S	P	As	Cl	Si	Sb
Electronegativity	2.1	2.5	2.1	2.1	$\mathbf{3 . 0}$	$\mathbf{1 . 8}$	$\mathbf{1 . 9}$

(A) PH_{3}
(B) AsCl_{3}
(C) SiH_{4}
(D) SbCl_{3}
(E) $\mathrm{H}_{2} \mathrm{~S}$
\qquad 14. Which pair is geometrically similar?
(A) SO_{2} and CO_{2}
(B) CO_{2} and OF_{2}
(C) PH_{3} and BF_{3}
(D) SO_{2} and O_{3}
\qquad 15. A molecule consists of four bonding pairs of electrons and no lone pairs. What is its structure?
(A) square planar
(B) tetrahedral
(C) linear
(D) square pyramidal
\qquad 16. Which of the following species is paramagnetic?
(A) O_{2} only
(B) N_{2} only
(C) N_{2} and B_{2}
(D) N_{2} and O_{2}
(E) B_{2} and O_{2}
\qquad 17. Predict the real bond angles in SeCl_{2} using the VSEPR theory:
(A) more than 120°
(B) between 109 and 120
(C) between 90 and 109
(D) 90
\qquad 18. The lattice energy for ionic crystals increases as the charge on the ions \qquad and the size of the ions \qquad ?
(A) increases, increases
(B) increases, decreases
(C) decreases, increases
(D) decreases, decreases
\qquad 19. Molecular Orbital Theory describes the bond order in He^{2+} as:
(A) 0
(B) 0.5
(C) 1
(D) 1.5
(E) 2
\qquad 20. What are the changes in phase going from points $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D}$

A. melting, vaporization, deposition
B. vaporization, freezing, sublimation
C. submination, freezing, melting
D. freezing, sublimation, vaporization
E. melting, sublimation, deposition

Part (2) - Show all your work. (8 points each)

21. For $\mathbf{C O}_{3}{ }^{2-}$, sulfate ion, draw the Lewis structure (by counting valence electrons of each atom), determine the electron-domain geometry, molecular geometry, hybridization, and show the angle between the bonds in a drawing. S is the central atom, all other atoms are attached to C.
22. Given $\mathrm{C}_{2}{ }^{2-}$, using molecular orbital and valence bond theory;
a) Write molecular orbital configuration
b) Determine BOND ORDER and indicate stability
c) Identify the MAGNETIC properties (paramagnetic or diamagnetic)
23. Calculate the enthalpy change, $\Delta \mathbf{H}$, for the following reaction using bond dissociation energy data. Bond dissociation energies, given in $\mathrm{kJ} /$ mole:

$$
\begin{aligned}
& \mathbf{N H}_{3(g)}+\mathbf{C l}_{2(g)} \rightarrow \mathbf{N H}_{2} \mathbf{C l}_{(g)}+\mathbf{H C l}_{(g)} \\
& \mathrm{N}-\mathrm{H}=389 \quad \mathrm{Cl}-\mathrm{Cl}=243 \quad \mathrm{H}-\mathrm{Cl}=431 \quad \mathrm{~N}-\mathrm{Cl}=201
\end{aligned}
$$

24. A metal crystallizes with a face-centered cubic lattice. The edge of the unit cell is 408 pm . Calculate the number of atoms in the unit cell and diameter of the metal atom. (For FCC , edge $=r \sqrt{8}$)
25. Consider the following molecules, $\mathbf{H}_{2}, \mathbf{C N}^{-}, \mathbf{H e}_{2}$, and $\mathbf{O}_{\mathbf{2}}$.
a) Which one has a bond order of 2 ? \qquad
b) Which one is unstable molecule?
c) Which one has a single bond?
d) Write them in order of increasing stability.

Bonus question (10 points). Please Show all your work for complete credit.

When silver crystallizes, it forms face-centered cubic cells. The unit cell edge is 408.7 pm . Given the density of silver is $10.5 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the Avogadro's number.

CHEM 1411 EXAM \# 3B (KEY)

PART-I

1. B
2. A
3. E
4. A
5. A
6. E
7. A
8. A
9. C
10. A
11. D
12. D
13. C
14. A
15. E
16. D
17. B
18. C
19. B
20. B

PART-II

21. $\mathrm{CO}_{3}^{-2}=4 \mathrm{e}^{-}+3\left(6 \mathrm{e}^{-}\right)+2 \mathrm{e}^{-}=24 \mathrm{e}^{-}=12$ pairs of electrons

electron domain geometry: trigonal planar molecular geometry: trigonal planar bond angle: 120° hybridization: sp^{2}
22. $\mathrm{C}_{2}{ }^{2-}=2\left(6 \mathrm{e}^{-}\right)+2 \mathrm{e}^{-}=14 \mathrm{e}^{-}$
a) $\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s} *\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2}\left(\pi_{2} \mathrm{p}_{\mathrm{y}}\right)^{2}\left(\pi_{2} \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\sigma_{2} \mathrm{p}_{\mathrm{x}}\right)^{2}$
b) bond - order $=(10-4) / 2=3$ triple bond $\rightarrow[: C \equiv C:]^{2-}$
c) diamagnetic
23. $\Delta \mathrm{H}=[\mathrm{D}(\mathrm{N}-\mathrm{H})+\mathrm{D}(\mathrm{Cl}-\mathrm{Cl}))]-[\mathrm{D}(\mathrm{N}-\mathrm{Cl})+\mathrm{D}(\mathrm{H}-\mathrm{Cl})]=$

$$
[(389+243)-(201+431)=(632)-9632)=\underline{\mathbf{0} \mathbf{k} \mathbf{J}}
$$

24. number of atoms $=8(1 / 8)=6(1 / 2)=4$ atoms edge $=\mathrm{a}=\mathrm{r} \sqrt{8} \quad \boldsymbol{\mathrm { r }}=\mathrm{a} / \sqrt{8} \boldsymbol{\rightarrow}$ diam. $=2 \mathrm{r}=2(408 \mathrm{pm} / 2.83)=\mathbf{2 8 8 . 5} \mathbf{~ p m} \boldsymbol{\rightarrow} \mathbf{2 . 8 8} \times \mathbf{1 0}^{\boldsymbol{- 1 0}} \mathbf{m}$
25. a) O_{2}
b) He_{2}
c) H_{2}
d) $\mathrm{He}_{2}>\mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{CN}^{-}$

Bonus Question

Number of atoms $\mathrm{Ag}=(8 \times 1 / 8)+(6 \times 1 / 2)=4 \mathrm{Ag}$ atoms
$\mathrm{V}=\left(408.7 \mathrm{pm} \times 10^{-12} \mathrm{mx} 10^{2} \mathrm{~cm}\right)^{3}=6.827 \times 10^{-23} \mathrm{~cm}^{3}$
Mass $=\mathrm{m}=$ D.V $=\left(10.5 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(6.827 \times 10^{-23} \mathrm{~cm}^{3}\right)=7.168 \times 10^{-22} \mathrm{~g}$
$(4 \mathrm{Ag}$ atoms $)(107.868 \mathrm{amu} / 1 \mathrm{Ag}$ atom $)(1.0 \mathrm{~g} / \mathrm{AV} \# \mathrm{amu})=7.168 \times 10^{-22} \mathrm{~g}$
$\mathrm{AV} \#=(4 \mathrm{Ag}$ atoms $)(107.868 \mathrm{amu} / 1 \mathrm{Ag}$ atom $)\left(1.0 \mathrm{~g} / 7.168 \times 10^{-22} \mathrm{~g}\right)=\mathbf{6 . 0 1 9}^{\mathbf{x} 10^{23}} \mathbf{a m u} / \mathrm{g}$
OR:
$\mathrm{AV} \#=($ number of atoms x atomic weight $) /$ mass $=(4 \times 107.868 \mathrm{amu}) / \mathrm{D} . \mathrm{V}$

$$
=(4 \times 107.868 \mathrm{amu}) /\left(7.168 \times 10^{-22} \mathrm{~g}\right)=\mathbf{6 . 0 1 9 \times 1 0 ^ { 2 3 }} \mathbf{a m u} / \mathrm{g}
$$

