

Houston Community College System

Chemistry 1411

EXAM # 3A Sample

CHEM 1411 EXAM # 3

(Chapters 8, 9,10, and 11)

Name:	
Score:	

<u>Directions</u>- please answer the following multiple-choice questions next to each number. Please show all your work for bonus question and part(2) questions in the space provided.

Part (1) - Multiple Choice - (3 points each)

1. How many unpaired electrons are in the Lewis dot symbol of a chlorine atom?

A. 7 B. 3 C. 5 D. 1 E. 8

2. Which of the following molecules consider to be a polar molecule?

A. NH_3 B. BF_3 C. CO_2 D. C_2H_2 E. CCl_4

3. Determine the total number of sigma and pi bonds in the following molecular structure.

A. 7σ , 10π B. 7σ , 10π C. 10σ , 7π D. 12σ , 5π E. none of these

_____ 4. Which one has the largest radius ?

A. K⁺ B. K C. Al³⁺ D. Na⁺ E. Mg

5. Which one is isoelectronic with Neon ?

A. F B. Al³⁺ C. Na⁺ D. O²⁻ E. all of these

_____6. Which one violates octet rule stability ?

A. S^{2-} B. Mg^+ C. O^{2-} D. Fr^+ E. Al $^{3+}$

7. Which one of the following forms an ionic bond with Chlorine gas?

- A. C B. Mg C. P D. As E. S
- 8. The configuration $(\sigma 2s)^2 (\sigma 2s^*)^2 (\pi 2p_x)^1 (\pi 2p_y)^1$ is the molecular orbital description for the ground state of
 - **A.** Li_{2}^{+} **B.** Be_{2} **C.** B_{2} **D.** B_{2}^{2-} **E.** C_{2}
- 9. Which of the following molecules is exception to octet rule.
 - A. PCl_5 B. $COCl_2$ C. BCl_3 D. CCl_4 E. two of these

10. Which of the following is the electron configuration for the Cr ³⁺ ? A. [Ar] 4s ² 3d ⁴ B. [Ar] 4s ¹ 3d ⁵ C. [Ar] 3d ³ D. [Ar] 4s ² 3d ¹ E. none of these
11. As the bond order of a bond increases, the bond energyand the bond length
A. increase, increaseB. decrease, decreaseC. increase, decreaseD. decrease, increaseE. More information is needed to answer this question
12. How many valence electron are in SO_4^{2-} ion?
A. 32e ⁻ B. 30e ⁻ C. 14e ⁻ D 28e ⁻ E. 24e ⁻ 13. Arrange the following atoms in order of increasing atomic radius:N, K, As, Fr
A. $N < K < As < Fr$ B. $N < As < K < Fr$ C. $As < K < N < Fr$ D. $Fr < K < As < N$ E. $K < Fr < N < As$
14. What are the hybridization and the approximate bond angle CS_2 (C is the central atom) ?
A. sp^2 , 107^0 B. sp^3 , 120^0 C. sp^2 , 120^0 D. sp , 180^0 E. sp , 120
15. The electron-pair geometry and molecular geometry of boron trichloride are respectively
A. tetrahedral,tetrahedral B. tetrahedral, trigonal planar C. trigonal planar, trigonal planar D. tetrahedral, trigonal pyramidal E. tetrahedral, trigonal bipyramidal
 16. Which of the following has bond order of 3 ? I. N ₂ II. CN ⁻ III) O ₂ IV) C ₂ ²⁻
A. I and II B. I only C. I,II, and IV D. II and III E. none of these
17. Which of the following groups contains no ionic compounds?
A. HCN, NO2, $Ca(NO_3)_2$ B. PCl ₅ , LiBr, $Zn(OH)_2$ C. NaH, CCl ₄ , SF ₄ D. KOH, CaF2, NaNH2E. CH2O, H2S, NH3
18. Which one of the following cubic cell contains only one atom?
A. Simple cubic cellB. Face centered cubic cellC. Body centered cubic cellD. Edge Cubic cellE. none of these
19. Which of the following is not a valid resonance structure for N_{3} -?
$\begin{bmatrix} \vdots & \vdots & \vdots \\ N = N - N \vdots \end{bmatrix}^{-} \begin{bmatrix} \vdots & N = N \vdots \\ \vdots & N - N \vdots \end{bmatrix}^{-} \begin{bmatrix} \vdots & N - N = N \vdots \\ N = N = N \end{bmatrix}^{-}$
I. II. III. IV.
A. I only B. II only C. I and II D. II and IV E. all are correct
<u>20.</u> Which of the species below would you expect to show the least hydrogen bonding?
A. NH_3 B. H_2O C. HF D. CH_4 E. all the same

21. Calculate the enthalpy change, ΔH , for the following gasphase reaction using bond energy data.

H H	Н Н	H-Cl	435KJ/mol
\ /		C-H	413 KJ/mol
C=C + H-Cl	→ H-C-C-H	C-C	348 KJ/mol
/ \		C=C	614 KJ/mol
H H	H Cl	C-Cl	328 KJ/mol

Dissociation energy

22. Draw Lewis dot (electron) structure for SO_3^{2-} and determine

a)	electron geometry	b) molecular geometry	c) hybridization	d) bond angle
----	-------------------	-----------------------	------------------	---------------

23. Given N_2^{2-} , using molecular orbital and valence bond theory ;

- a) Write molecular orbital configurations
- b) Determine BOND ORDER and indicate stability
- c) Identify the MAGNETIC properties (paramagnetic or diamagnetic)

24. Chromium metal crystallizes as body-centered lattice. If the atomic radius of Cr is 1.25 angstrums, what is the density of Cr metal in g /cm³? (1 A⁰ =1.0x10⁻⁸ cm , 1 g = $6.02x10^{23}$ a.m.u.) (For bcc , L = 4r / $\sqrt{3}$)

- 25. Define the followings;
 - a) Triple point-
 - b) Sublimation-
 - c) Avogadro's law -
 - d) Bond order-
 - e) Critical temperature and Pressure--

BONUS question-Show all your work.(10 points)

You are given a small bar of an unknown metal, X. You find the density of the metal to be 10.5 g/cm³. An X-ray differaction experiment measures the edge of the unit cell as 409 pm. Assuming that the metal crystallizes in a face-centered lattice, what is metal, X, most likely to be?

<u>CHEM 1411 EXAM # 3A (KEY)</u>

1. D	6. B	11. C	16. C
2. A	7. B	12. A	17. E
3. C	8. C	13. B	18. A
4. B	9. E	14. D	19. A
5. E	10. C	15. C	20. D

21. $\Delta H = [614 + 435] - [328 + 348 + 413] = -40 \text{ KJ}$

22. $SO_3^{2-} = 6e^{-} + 3(6e^{-}) + 2e^{-} = 26e^{-} = 13 \text{ p.e}^{-}$

S]2-	a) tetrahedral
	b) triagonal pyramidal
:0: :0: :0:	c) sp^3
	d) 107°

23. $N_2^{2-} = 16e^- = (\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2py})^2 (\pi_{2pz})^2 (\sigma_{2px})^2 (\pi_{2py}^*)^1 (\pi_{2pz}^*)^1 \rightarrow [:N = N:]^{2-}$

 $B.O. = \frac{10 - 6}{2}$; **paramagnetic**

24. Cr atome = 8(1/8) + 1(1) = 2 atoms mass (g Cr) = (2)(51.996 amu)(1 g/ 6.022x10²³ amu) = 1.73 x10⁻²² g volume (cm³) = L³ = (4 r / $\sqrt{3}$)³ = (4x1.25 x 10⁻⁸ cm / $\sqrt{3}$)³ = (4x1.25 x 10⁻⁸ cm / 1.73)³ = 2.41 x10⁻²³ cm³

$$D = (m/v) = (1.73 x 10^{-22} g / 2.41 x 10^{-23} cm^3) = 7.18 g/cm^3$$

- 25. a) **<u>Triple point</u>**: is the point where solid, liquid, and gas are all at equilibrium.
 - b) **<u>Sublimation</u>**: process by which solid changes to gas.
 - c) Avogadro's Law: 1 mole of any gas at S.T.P. condition has the volume of 22.4 liter (22400 ml).
 - d) **Bond order :** determines the number of bonds between two atoms.
 - e) <u>**Criptical points-**</u> The liquid –vapor line terminates at the critical point. At the critical temperature, a liquid has a vapor pressure qual to its critical pressure. Above the critical temperature a liquid phase cannot be formed.; the single phase that exists is called supercritical fluid.

BONUS

Number of X atoms = 8(1/8) + 6(1/2) = 4 atoms of X

L= (409 pm) x10⁻¹² m x 10² cm = 4.09 x10-8 cm
$$\rightarrow$$
 V = L³ = (4.09 x10⁻⁸ cm)³ = 6.84 x10⁻²³ cm³

$$m = d.v = (10.5 \text{ g/cm}^3)(6.84 \text{ x}10^{-23} \text{ cm}^3) = 7.18 \text{ x} 10^{-22} \text{ g}$$

$$(7.18 \times 10^{-22} \text{ g})(6.022 \times 10^{23} \text{ amu}/ 1 \text{ g}) = 432 \text{ g amu}$$

432 amu / 4 atoms of X = 108 amu / atom \rightarrow Silver atom, Ag

Houston Community College System

Chemistry 1411

EXAM # 3B Sample

CHEM 1411 EXAM # 3B

(8,9,10, and 11)

Name:	
Score:	

<u>Directions</u>- please answer the following multiple-choice questions next to each number. Please show all your work for bonus question and part (2) questions in the space provided.

Part (1) - Multiple Choice - (3 points each)

1.W	hich molecule cor	ntains one uns	hared pair	of valence elect	rons?		
		(B) NH ₃	(C) CH_4	(D) Na		(E) CO ₂	
2. Ir	n the Lewis structu	ure of SF_{2} , the	re are	_ single bonds ar	nd total	lone pairs?	
		-	(C) 2,2			(E) 3,6	
3. W	Which of the follow	wing molecule	s violates t	he octet rule?			
	A) CBr ₄ Which molecule ex			(D) P0	Cl ₃	(E) AsF_5	
(4	$A) O_{2}$	(B) BeCl ₂	(C) CO	(D) H	Se	(E) NF_{3}	
	xamine the follow:	2		2	2	5	
		PHONE Ter	A	• В — — — —			
(4	A) melting point	(B)critical	point (C) triple point	(D) s	sublimation point	t
6. Fo	or which of the fol	lowing molec	ules is the	electron domain	geometry th	e same as the	
	olecular geometry A). O_3	(B). IF ₅		C) NH ₃	(D)) SO_4^{2-}	
7. V	What are the forma	al charges on t	he boron a	nd nitrogen in th	ne compound	IBF ₃ -NH ₃ ?	
	A) -2 and +2 D) +1 and -1	· · ·	+2 and -2 -1 and +1		(C) 0 and 0)	
9. <i>A</i>	Which would be ex (A) P According to mode	(B) As		(C) Si	(D) A (σ) and pi (π		ylene molecule
	$H_2C = CH_2$ is A) 1 σ and 4 π	(B) 1 π and	id 5 σ	(C) 1 σ and 5 π	(D) 2	π and 4 σ	(E) 1 π and 4 σ
10.	The element with	the greatest to	endency to	gain electrons is	8		
	(A) F	(B) At		(C) O	(D) N	T	(E) Bi

$_$ 11. What are the hy		-			- 0		
(A) sp,120 ^{0}	(B) sp^3 , 1	09^{0} (C) sp ²	, 120 °	(D) $sp^{3}, 10$	07 °		
12. The strongest in	ntermolecular ir	nteractions betwee	en ethyl alcoho	ol (CH ₃ CH	₂ OH) mol	ecules arise from	1
(A) dipole-dipo	le forces (B)I	ondon dispersion	forces (C)hy	ydrogen bo	onding (D) covalent bond	ling
13. Which of the for Atoms Electronegative	H S	unds contains the P As 2.1 2.1	LEAST polar Cl 3.0	Si	Sb 1.9		
(A) PH ₃	(B) AsCl ₃	(C) SiH ₄	(D) SbCl ₃	(E) H_2S	
14. Which pair is go (A) SO ₂ and CO	•	nilar? CO2 and OF2	(C) PH ₃ ar	nd BF3	(D) SO2 a	nd O3	
15. A molecule con (A) square plana		nding pairs of elec etrahedral	etrons and no l (C) linear			s structure? e pyramidal	
16. Which of the fo (A) O ₂ only	ollowing species (B) N2 only		N ₂ and B ₂	(D) N2	and O ₂	(E) B ₂ and O ₂	
17. Predict the real	bond angles in	SeCl_using the V	SEPR theory:	:			
(A) more than 1		between 109 and 1		etween 90	and 109	(D) 90	
18. The lattice energy	gy for ionic crys	stals increases as t	the charge on	the ions	_ and the	size of the ions _	?
(A) increases, in(C) decreases, in		. ,	ses, decreases ases, decreases	S			
19. Molecular Orbit	tal Theory descr	ribes the bond ord	er in He ²⁺ as:				
(A) 0	(B) 0.5	(C) 1	(D) 1.5	()	E) 2		
20. What are the ch	anges in phase §	going from points	$A \rightarrow B \rightarrow C$	→ D			
	P A	В					

A. melting, vaporization, deposition C. submination, freezing, melting E. melting, sublimation, deposition

D

B. vaporization, freezing, sublimation D. freezing, sublimation, vaporization

- т

9

С

Part (2) - Show all your work. (8 points each)

21. For CO₃²⁻, sulfate ion, draw the <u>Lewis structure</u> (by counting valence electrons of each atom), determine the <u>electron-domain geometry</u>, molecular <u>geometry</u>, hybridization, and show the <u>angle</u> between the bonds in a drawing. S is the central atom, all other atoms are attached to C.

- 22. Given C_2^{2-} , using molecular orbital and valence bond theory;
 - a) Write molecular orbital configuration
 - b) Determine **BOND ORDER** and indicate stability
 - c) Identify the **MAGNETIC** properties (paramagnetic or diamagnetic)

23. Calculate the enthalpy change, ΔH , for the following reaction using bond dissociation energy data. Bond dissociation energies, given in kJ/mole:

 $NH_{3(g)} + Cl_{2(g)} \rightarrow NH_2Cl_{(g)} + HCl_{(g)}$

N-H = 389 Cl-Cl = 243 H-Cl = 431 N-Cl = 201

24. A metal crystallizes with a face-centered cubic lattice. The edge of the unit cell is 408 pm. Calculate the **number of atoms** in the unit cell and **diameter** of the metal atom. (For FCC, edge = $r\sqrt{8}$)

25. Consider the following molecules, H_2 , CN^- , He_2 , and O_2 .

a) Which one has a bond order of 2?

b) Which one is unstable molecule?

c) Which one has a single bond?

d) Write them in order of increasing stability.

Bonus question (10 points). Please Show all your work for complete credit.

When silver crystallizes, it forms face-centered cubic cells. The unit cell edge is 408.7 pm. Given the density of silver is 10.5 g/cm³, calculate the **Avogadro's number**.

CHEM 1411 EXAM # 3B (KEY)

PART - I

1. B	4. A	7. E	10. A	13. A	16. E	19. A
2. A	5. C	8. A	11. D	14. D	17. C	20. A
3. E	6. D	9. B	12. C	15. B	18. B	

<u>**PART - II**</u> 21. $\text{CO}_3^{-2} = 4\text{e}^- + 3(6\text{e}^-) + 2\text{e}^- = 24 \text{ e}^- = 12 \text{ pairs of electrons}$

three resonances

electron domain geometry: trigonal planar molecular geometry: trigonal planar bond angle: 120° **hybridization:** sp²

22. $C_2^{2^-} = 2(6e^-) + 2e^- = 14e^-$

a) $(\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_2 p_y)^2 (\pi_2 p_z)^2 (\sigma_2 p_x)^2$ b) bond - order = (10 - 4)/2 = 3 triple bond \rightarrow [:C = C:]²⁻ c) diamagnetic

23. $\Delta H = [D(N-H) + D(Cl-Cl))] - [D(N-Cl) + D(H-Cl)] =$

[(389+243) - (201+431) = (632) - 9632) = 0 kJ

24. number of atoms = 8(1/8) = 6(1/2) = 4 atoms

edge= $a = r \sqrt{8}$ \rightarrow $r = a / \sqrt{8}$ \rightarrow diam. = 2 r = 2 (408 pm / 2.83) = 288.5 pm \rightarrow 2.88 x 10⁻¹⁰ m

b) He₂ c) H₂ d) He₂ > H₂ > O₂ > CN⁻ 25. a) O₂

Bonus Question

Number of atoms Ag = (8x1/8) + (6x1/2) = 4 Ag atoms

 $V = (408.7 \text{ pm x } 10^{-12} \text{ m x } 10^2 \text{ cm})^3 = 6.827 \text{ x} 10^{-23} \text{ cm}^3$

Mass = m = D.V = $(10.5 \text{ g/cm}^3)(6.827 \text{ x}10^{-23} \text{ cm}^3) = 7.168 \text{x}10^{-22} \text{ g}$

 $(4 \text{ Ag atoms})(107.868 \text{ amu}/ 1 \text{ Ag atom}) (1.0 \text{ g}/\text{AV \# amu}) = 7.168 \times 10^{-22} \text{ g}$

AV # = (4 Ag atoms)(107.868 amu/ 1 Ag atom) ($1.0 \text{ g} / 7.168 \times 10^{-22} \text{ g}$) = **6.019x10²³ amu/g**

OR:

AV # = (number of atoms x atomic weight)/ mass = (4x107.868 amu)/ D.V= $(4x107.868 \text{ amu}) / (7.168x10^{-22} \text{ g}) = 6.019x10^{23} \text{ amu/g}$